
Software Distribution Using the ESP Package Manager
ESP−004−20031028

Michael Sweet
Copyright 1999−2003 by Easy Software Products

Table of Contents
Preface..1

Organization of this Manual..1
Notation Conventions..2
Abbreviations...2
Other References..3

1 − Introduction to EPM..5
What is EPM?..5
History and Evolution..5
Existing Software Packaging Systems...6
Design Goals of EPM..7
Resources...7

2 − Building EPM..9
Requirements...9
Configuring the Software...10
Building the Software..11
Installing the Software...11

3 − Packaging Your Software with EPM..15
The Basics..15
Building a Software Distribution...16
Installing the Software Package...17
Including the Setup GUI..17

4 − Advanced Packaging with EPM..19
Including Other List Files..19
Conflicts, Provides, Replaces, and Requires...19
Scripts..20
Conditional Directives...21
Protecting Object Files from Stripping..21
Software Patches..21
Variables..22
Init Scripts..22

A − GNU General Public License..23

B − Command Reference..29
epm...30
epminstall...33
mkepmlist...35
setup...36

C − List File Reference...37
The EPM List File Format...37
The setup.types File...41

Software Distribution Using the ESP Package Manager

i

Table of Contents
D − Release Notes..43

Changes in EPM v3.7..43
Changes in EPM v3.6..44
Changes in EPM v3.5.1...44
Changes in EPM v3.5..44
Changes in EPM v3.4..45
Changes in EPM v3.3..45
Changes in EPM v3.2.1...45
Changes in EPM v3.2..45
Changes in EPM v3.1..46
Changes in EPM v3.0..46
Changes in EPM v2.8..47
Changes in EPM v2.7..47
Changes in EPM v2.6..47
Changes in EPM v2.5..47
Changes in EPM v2.4..48
Changes in EPM v2.3..48
Changes in EPM v2.2..48
Changes in EPM v2.1..49
Changes in EPM v2.0..49
Changes in EPM v1.7..49
Changes in EPM v1.6..49
Changes in EPM v1.5..50
Changes in EPM v1.4..50
Changes in EPM v1.3..50
Changes in EPM v1.2..50
Changes in EPM v1.1..50

Software Distribution Using the ESP Package Manager

ii

Preface

This document provides a tutorial and reference for the ESP Package Manager ("EPM") software, version 3.7.

Organization of this Manual

This document is organized into the following chapters and appendices:

1 − Introduction to EPM•
2 − Building EPM•
3 − Packaging Your Software with EPM•
4 − Advanced Packaging with EPM•
A − Software License Agreement•
B − Command Reference•
C − List File Reference•
D − Release Notes•
E − Sample List File•

Preface 1

Notation Conventions

Various font and syntax conventions are used in this guide. Examples and their meanings and uses are
explained below:

Example Description

epm
epm(1)

The names of commands; the first
mention of a command or function in a
chapter is followed by a manual page
section number.

/var
/usr/bin/epm

File and directory names.

Request ID is Printer−123 Screen output.

lp −d printer filename ENTER Literal user input; special keys like
ENTER are in ALL CAPS.

foo start of long command \
 end of long command ENTER

Long commands are broken up on
multiple lines using the backslash (\)
character. Enter the commands without
the backslash.

12.3 Numbers in the text are written using
the period (.) to indicate the decimal
point.

Abbreviations

The following abbreviations are used throughout this manual:

kb
Kilobytes, or 1024 bytes

Mb
Megabytes, or 1048576 bytes

Gb
Gigabytes, or 1073741824 bytes

Software Distribution Using the ESP Package Manager

2 Notation Conventions

Other References

http://www.easysw.com/epm/
The official home page of the ESP Package Manager software.

http://www.debian.org/devel/
Debian Developers' Corner

http://techpubs.sgi.com/
IRIX Documentation On−Line

http://www.rpm.org/
The RedHat Package Manager home page.

http://docs.sun.com/
Solaris Documentation On−Line

Software Distribution Using the ESP Package Manager

Other References 3

http://www.easysw.com/epm/
http://www.debian.org/devel/
http://techpubs.sgi.com/
http://www.rpm.org/
http://docs.sun.com/

Software Distribution Using the ESP Package Manager

4 Other References

1 − Introduction to EPM

This chapter provides an introduction to the ESP Package Manager ("EPM").

What is EPM?

Software distribution under UNIX/Linux can be a challenge, especially if you ship software for more than one
operating system. Every operating system provides its own software packaging tools and each has unique
requirements or implications for the software development environment.

The ESP Package Manager ("EPM") is one solution to this problem. Besides its own "portable" distribution
format, EPM also supports the generation of several vendor−specific formats. This allows you to build
software distribution files for almost any UNIX/Linux operating system from the same sources.

History and Evolution

When Easy Software Products was founded in 1993, we originally shipped software only for the SGI IRIX
operating system. In 1997 we added support for Solaris, which was quickly followed by HP−UX support in
1998.

Each new operating system and supported processor required a new set of packaging files. While this worked,
it also meant that we had to keep all of the packaging files synchronized manually. Needless to say, this
process was far from perfect and we had more than one distribution that was not identical on all operating
systems.

1 − Introduction to EPM 5

As we began developing the Common UNIX Printing System (http://www.cups.org/) in 1998, our initial goal
was to add support for two additional operating systems: Linux and Compaq Tru64 UNIX. If we wanted to
avoid the mistakes of the past, we clearly had to change how we produced software distributions.

The first version of EPM was released in 1999 and supported so−called "portable" software distributions that
were not tied to any particular operating system or packaging software. Due to popular demand, we added
support for vendor−specific packaging formats in the second major release of EPM, allowing the generation
of portable or "native" distributions from one program and one set of software distribution files.

Existing Software Packaging Systems

As we looked for a solution to our problem, we naturally investigated the existing open−source packaging
systems. Under Linux, we looked at the RedHat Package Manager ("RPM") and Debian packaging software
("dpkg" and "dselect"). For the commercial UNIX's we looked at the vendor−supplied packaging systems.
Table 1.1 shows the results of our investigation.

Table 1.1: Software Packaging Formats

Format Operating Systems1 Binaries?
Cross−

Platform?
Patches?Upgrades? Conflicts? Requires? Replaces?

Config
Files?

Map
Files?

installp AIX Yes No No No Yes Yes No No No

pkg_add FreeBSD Yes Yes2 No No No No No No No

pkg_add
NetBSD

OpenBSD
Yes Yes2 No No Yes Yes No No No

dpkg
Corel Linux

Debian
GNU/Linux

Yes Yes2 No Yes Yes Yes Yes Yes No

swinstall HP−UX Yes No Yes Yes Yes Yes No Yes Yes

inst IRIX Yes No Yes Yes Yes Yes Yes Yes Yes

pkgadd Solaris Yes No Yes No Yes Yes No Yes Yes

rpm

Mandrake
RedHat
SuSE

TurboLinux

Yes Yes2 No Yes Yes Yes No Yes No

setld Tru64 UNIX Yes No No No Yes Yes No No No

Standard packaging system for named operating systems.1.
These packaging systems are cross−platform but require the package management utilities to be
installed on the platform before installing the package.

2.

As you can see, none of the formats supported every feature we were looking for. One common fault of all
these formats is that they do not support a common software specification file format. That is, making a
Debian software distribution requires significantly different support files than required for a Solaris pkg
distribution. This makes it extremely difficult to manage distributions for multiple operating systems.

All of the package formats support binary distributions. The RPM and Debian formats also support source
distributions that specifically allow for recompilation and installation. Only the commercial UNIX formats
support patch distributions − you have to completely upgrade a software package with RPM and Debian. All
but the Solaris pkg format allow you to upgrade a package without removing the old version first.

Software Distribution Using the ESP Package Manager

6 Existing Software Packaging Systems

http://www.cups.org/

When building the software packages, RPM and Debian force you to create the actual directories, copy the
files to those directories, and set the ownerships and permissions. You essentially are creating a directory for
your software that can be archived in the corresponding package format. To ensure that all file permissions
and ownerships are correct, you must build the distribution as the root user or use the fakeroot software,
introducing potential security risks and violating many corporate security policies. It can also make building
distributions difficult when dynamic data such as changing data files or databases is involved.

The commercial UNIX formats use software list files that map source files to the correct directories and
permissions. This allows for easier delivery of dynamic data, configuration management of what each
distribution actually contains, and eliminates security issues with special permissions and building
distributions as the root user. Using the proprietary format also has the added benefit of allowing for software
patches and using the familiar software installation tools for that operating system. The primary disadvantage
is that the same distributions and packaging software cannot be used on other operating systems.

Design Goals of EPM

EPM was designed from the beginning to build binary software distributions using a common software
specification format. The same distribution files work for all operating systems and all distribution formats.
Supporting source code distributions was not a goal since most RPM and Debian source distributions are little
more than wrapping around a compressed tar file containing the source files and a configure script.

Over the years, additional features have made their way into EPM to support more advanced software
packages. Whenever possible, EPM emulates a feature if the vendor packager does not support it natively.

Resources

The EPM web site provides access to the current software and documentation for EPM:

http://www.easysw.com/epm/

The EPM source code can be downloaded in compressed tar files or via the popular CVS software. Please see
the EPM web site for complete instructions.

The Easy Software Products news server provides several newsgroups for EPM. You can access it at:

news.easysw.com

Commercial support for EPM is available from Easy Software Products and is one way to contribute to the
continued development of EPM. The other way to contribute is by donating code, examples, and bug fixes. If
you have adapted EPM for another operating system or have added a new feature that you feel will be
generally useful, please contribute it!

Software Distribution Using the ESP Package Manager

Design Goals of EPM 7

http://www.easysw.com/epm/

Software Distribution Using the ESP Package Manager

8 Design Goals of EPM

2 − Building EPM

This chapter shows how to configure, build, and install the ESP Package Manager.

Requirements

EPM requires very little pre−installed software to work. Most items will likely be provided as part of your
OS. Your development system will need a C compiler, the make(1) program (GNU, BSD, and most vendor
make programs should work), the Bourne (or Korn or Bash) shell (sh(1)), and gzip(1).

The optional graphical setup program requires a C++ compiler, the FLTK library, version 1.1.x, and (for
UNIX/Linux) the X11 libraries. FLTK is available at the following URL:

http://www.fltk.org/

Your end−user systems will require the Bourne (or Korn or Bash) shell (sh), the df(1) program, the
tar(1) program, and the gzip(1) program to install portable distributions. All but the last are standard
items, and most vendors include gzip as well.

Note:

The gzip program is only required to uncompress the software distribution .tar.gz file. If
you supply the uncompressed .tar file or its contents, then gzip is not required on the
end−user system.

2 − Building EPM 9

http://www.fltk.org/

EPM can also generate vendor−specific distributions. These require the particular vendor tool, such as
rpm(8) and dpkg(8), to generate the software distribution on the development system and load the
software distribution on the end−user system.

Configuring the Software

EPM uses GNU autoconf(1) to configure itself for your system. The configure script is used to
configure the EPM software, as follows:

./configure ENTER

Choosing Compilers

If the configure script is unable to determine the name of your C or C++ compiler, set the CC and CXX
environment variables to point to the C and C++ compiler programs, respectively. You can set these variables
using the following commands in the Bourne, Korn, or Bash shells:

export CC=/foo/bar/gcc ENTER
export CXX=/foo/bar/gcc ENTER

If you are using C shell or TCsh, use the following commands instead:

setenv CC /foo/bar/gcc ENTER
setenv CXX /foo/bar/gcc ENTER

Run the configure script again to use the new commands.

Choosing Installation Directories

The default installation prefix is /usr, which will place the EPM programs in /usr/bin, the setup GUI in
/usr/lib/epm, and the man pages in /usr/man. Use the −−prefix option to relocate these files to another
directory:

./configure −−prefix=/usr/local ENTER

The configure script also accepts the −−bindir, −−libdir, and −−mandir options to relocate each
directory separately, as follows:

./configure −−bindir=/usr/local/bin −−libdir=/usr/local/lib \
 −−mandir=/usr/local/share/man ENTER

Options for the Setup GUI

The setup GUI requires the FLTK library. The configure script will look for the fltk−config utility that
comes with FLTK 1.1.x. Set the FLTKCONFIG environment variable to the full path of this utility if it cannot
be found in the current path:

setenv FLTKCONFIG /foo/bar/bin/fltk−config ENTER

or:

Software Distribution Using the ESP Package Manager

10 Configuring the Software

FLTKCONFIG=/foo/bar/bin/fltk−config ENTER
export FLTKCONFIG

Building the Software

Once you have configured the software, type the following command to compile it:

make ENTER

Compilation should take a few minutes at most. Then type the following command to determine if the
software compiled successfully:

make test ENTER
Portable distribution build test PASSED.
Native distribution build test PASSED.

The test target builds a portable and native distribution of EPM and reports if the two distributions were
generated successfully.

Installing the Software

Now that you have compiled and tested the software, you can install it using the make command or one of the
distributions that was created. You should be logged in as the super−user unless you specified installation
directories for which you have write permission. The su(8) command is usually sufficient to install
software:

su ENTER

Installing Using the make Command

Type the following command to install the EPM software using the make command:

make install ENTER
Installing EPM setup in /usr/lib/epm
Installing EPM programs in /usr/bin
Installing EPM manpages in /usr/man/cat1 and /usr/man/man1
Installing EPM documentation in /usr/share/doc/epm

Software Distribution Using the ESP Package Manager

Building the Software 11

Installing Using the Portable Distribution

The portable distribution can be found in a subdirectory named using the operating system, version, and
architecture. For example, the subdirectory for a Linux 2.4.x system on an Intel−based system would be
linux−2.4−intel. The subdirectory name is built from the following template:

os−major.minor−architecture

The os name is the common name for the operating system. Table 2.1 lists the abbreviations for most
operating systems:

Table 2.1: Operating System Name Abbreviations

Operating System Name

AIX aix

Compaq Tru64 UNIX
Digital UNIX
OSF/1

tru64

Darwin darwin

FreeBSD freebsd

HP−UX hpux

IRIX irix

Linux linux

MacOS X darwin

NetBSD netbsd

OpenBSD openbsd

Solaris solaris

The major.minor string is the operating system version number. Any patch revision information is
stripped from the version number, as are leading characters before the major version number. For example,
HP−UX version B.11.11 will result in a version number string of 11.11.

The architecture string identifies the target processor. Table 2.2 lists the supported processors:

Table 2.2: Processor Architecture Abbreviations

Processor(s) Abbreviation

Compaq Alpha alpha

HP Precision Architecturehppa

INTEL 80x86 intel

MIPS RISC mips

IBM Power PC powerpc

SPARC
MicroSPARC
UltraSPARC

sparc

Software Distribution Using the ESP Package Manager

12 Installing the Software

Once you have determined the subdirectory containing the distribution, type the following commands to
install EPM from the portable distribution:

cd os−major.minor−architecture ENTER
./epm.install ENTER

The software will be installed after answering a few yes/no questions.

Installing Using the Native Distribution

The test target also builds a distribution in the native operating system format, if supported. Table 2.3 lists
the native formats for each supported operating system and the command to run to install the software.

Table 2.3: Native Operating System Formats

Operating System Format Command

AIX aix installp −ddirectory epm

Compaq Tru64 UNIX
Digital UNIX
OSF/1

setld setld −a directory???

FreeBSD
NetBSD
OpenBSD

bsd
cd directory
pkg_add epm

HP−UX depot swinstall −f directory

IRIX inst swmgr −f directory

Linux rpm rpm −i directory/epm−3.0.rpm

MacOS X osx Double−click on the .pkg folder in the finder.

Solaris pkg pkgadd −d directory epm

Software Distribution Using the ESP Package Manager

Installing the Software 13

Software Distribution Using the ESP Package Manager

14 Installing the Software

3 − Packaging Your Software with EPM

This chapter describes how to use EPM to package your own software packages.

The Basics

EPM reads one or more software "list" files that describe a single software package. Each list file contains one
or more lines of ASCII text containing product or file information. Comments start with the # character,
directives start with the % character, variable start with the $ character, and files, directories, and symlinks
start with a letter.

Product Information

Every list file needs to define the product name, copyright, description, license, README file, vendor, and
version:

%product Kung Foo Firewall
%copyright 1999−2002 by Foo Industries, All Rights Reserved.
%vendor Foo Industries
%license COPYING
%readme README
%description Kung Foo firewall software for your firewall.
%version 1.2.3p4 1020304

The %license and %readme directives specify files for the license agreement and README files for the
package, respectively.

3 − Packaging Your Software with EPM 15

The %product, %copyright, %vendor, and %description directives take text directly from the line.

The %version directive specifies the version numbers of the package. The first number is the
human−readable version number, while the second number is the integer version number. If you omit the
integer version number, EPM will calculate one for you.

Files, Directories, and Symlinks

Each file in the distribution is listed on a line starting with a letter. The format of all lines is:

type mode owner group destination source options

Regular files use the letter f for the type field:

f 755 root sys /usr/bin/foo foo

Configuration files use the letter c for the type field:

c 644 root sys /etc/foo.conf foo.conf

Directories use the letter d for the type field and use a source path of "−":

d 755 root sys /var/spool/foo −

Finally, symbolic links use the letter l (lowercase L) for the type field:

l 000 root sys /usr/bin/foobar foo

The source field specifies the file to link to and can be a relative path.

Wildcards

Wildcard patterns can be used in the source field to include multiple files on a single line:

f 0444 root sys /usr/share/doc/foo *.html

Building a Software Distribution

The epm(1) program is used to build software distributions from list files. To build a portable software
distribution for an application called "foo", type the following command:

epm foo ENTER

If your application uses a different base name than the list file, you can specify the list filename on the
command−line as well:

epm foo bar.list ENTER

EPM can also produce vendor−specific distributions using the −f option:

epm −f format foo bar.list ENTER

Software Distribution Using the ESP Package Manager

16 The Basics

The format option can be one of the following keywords:

aix − AIX software distribution.•
bsd − FreeBSD, NetBSD, or OpenBSD software distribution.•
depot or swinstall − HP−UX software distribution.•
dpkg − Debian software distribution.•
inst or tardist − IRIX software distribution.•
native − "Native" software distribution (RPM, INST, DEPOT, PKG, etc.) for the platform.•
osx − MacOS X software distribution.•
pkg − Solaris software distribution.•
portable − Portable software distribution (default).•
rpm − RedHat software distribution.•
setld − Tru64 (setld) software distribution.•

Everything in the software list file stays the same − you just use the −f option to select the format. For
example, to build an RPM distribution of EPM, type:

epm −f rpm epm

The result will be an RPM distribution file instead of the portable distribution file.

Installing the Software Package

Once you have created the software distribution, you can install it. Portable distributions create an install
script called product.install, where "product" is the name of the package:

cd os−release−arch ENTER
./product.install ENTER

After answering a few yes/no questions, the software will be installed. To bypass the questions, run the script
with the now argument:

cd os−release−arch ENTER
./product.install now ENTER

Including the Setup GUI

EPM also provides an optional graphical setup program. To include the setup program in your distributions,
create a product logo image in XPM format and use the −−setup−image option when creating your
distribution:

epm −−setup−image foo.xpm foo ENTER

Software Distribution Using the ESP Package Manager

Installing the Software Package 17

Software Distribution Using the ESP Package Manager

18 Installing the Software Package

4 − Advanced Packaging with EPM

This chapter describes the advanced packaging features of EPM.

Including Other List Files

The %include directive includes another list file:

%include filename

Includes can be nested, usually up to 250 levels (depends on the host operating system and libraries.)

Conflicts, Provides, Replaces, and Requires

Software conflicts and requirements are specified using the %incompat and %requires directives. If your
software replaces another package, you can specify that using the %replaces directive (%replaces is
silently mapped to %conflicts when the distribution format does not support package replacement.) If
your package provides certain functionality associated with a standard name, the %provides directive can
be used.

Dependencies are specified using the package name and optionally the lower and upper version numbers:

%requires foobar
%requires foobar 1.0
%incompat foobar
%incompat foobar 0.9

4 − Advanced Packaging with EPM 19

%replaces foobar
%replaces foobar 1.2 3.4
%provides foobar

or the filename:

%requires /usr/lib/libfoobar.so
%incompat /usr/lib/libfoobar.so.1.2

Package dependencies are currently enforced only for the same package format, so a portable distribution that
requires package "foobar" will only look for an installed "foobar" package in portable format.

Filename dependencies are only supported by the Debian, portable, and RPM distribution formats.

Scripts

Bourne shell script commands can be executed before or after installation, patching, or removal of the
software. The %preinstall and %postinstall directives specify commands to be run before and after
installation, respectively:

%preinstall echo Command before installing
%postinstall echo Command after installing

Similarly, the %prepatch and %postpatch directives specify commands to be executed before and after
patching the software:

%prepatch echo Command before patching
%postpatch echo Command after patching

Finally, the %preremove and %postremove directives specify commands that are run before and after
removal of the software:

%preremove echo Command before removing
%postremove echo Command after removing

To include an external script file, use the <filename notation:

%postinstall <filename

To include multiple lines directly, use the <<string notation:

%postinstall <<EOF
echo Command before installing
/usr/bin/foo
EOF

Note that all commands specified in the list file will use the variable expansion provided by EPM, so be sure
to quote any dollar sign ($) characters in your commands. For example, "$foo" is replaced by the value of
"foo", but "$$foo" becomes "$foo".

Software Distribution Using the ESP Package Manager

20 Scripts

Conditional Directives

The %system directive can match or not match specific operating system names or versions. The operating
system name is the name reported by uname in lowercase, while the operating system version is the major
and minor version number reported by uname −r:

%system irix
Only include the following files when building a distribution for the IRIX operating system.

%system linux−2.0
Only include the following files when building a distribution for Linux 2.0.x.

%system !irix !linux−2.0
Only include the following files when building a distribution for operating systems other than IRIX
and Linux 2.0.x.

The special name all is used to match all operating systems:

%system all

For format−specific files, the %format directive can be used:

%format rpm
Only include the following files when building an RPM distribution.

%format !rpm
Only include the following files when not building an RPM distribution.x.

%format all
Include the following files for all types of distributions.

Finally, EPM can conditionally include lines using the %if, %elseif, %ifdef, %elseifdef, %else,
and %endif directives. %if directives include the text that follows if the named variable(s) are defined to a
non−empty string, while %ifdef directives only include the text if the named variable(s) are defined to any
value.

Protecting Object Files from Stripping

The nostrip() option can be included at the end of a file line to prevent EPM from stripping the symbols
and debugging information from the file:

f 755 root sys /usr/lib/libfoo.so libfoo.so nostrip()

Software Patches

EPM supports portable software patch distributions which contain only the differences between the original
and patch release. Patch files are specified using uppercase letters for the affected files. In the following
example, the files /usr/bin/bar and /etc/foo.conf are marked as changed since the original release:

f 755 root sys /usr/bin/foo foo
F 755 root sys /usr/bin/bar bar
f 755 root sys /usr/share/man/man1/foo.1 foo.man
f 755 root sys /usr/share/man/man1/bar.1 bar.man
C 644 root sys /etc/foo.conf foo.conf

Software Distribution Using the ESP Package Manager

Conditional Directives 21

Variables

EPM imports the current environment variables for use in your list file. You can also define new variable in
the list file or on the command−line when running EPM.

Variables are defined by starting the line with the dollar sign ($) followed by the name and value:

$name=value
$prefix=/usr
$exec_prefix=${prefix}
$bindir=$exec_prefix/bin

Variable substitution is performed when the variable is defined, so be careful with the ordering of your
variable definitions.

Also, any variables you specify in your list file will be overridden by variables defined on the command−line
or in your environment, just like with make. This can be a useful feature or a curse, depending on your choice
of variable names.

As you can see, variables are referenced using the dollar sign ($). As with most shells, variable names can be
surrounded by curly braces (${variable}) to explicitly delimit the name.

If you need to insert a $ in a filename or a script, use $$:

%install echo Enter your name:
%install read $$name
%install echo Your name is $$name.

Init Scripts

Initialization scripts are generally portable between platforms, however the location of initialization scripts
varies greatly.

The i file type can be used to specify and init script that is to be installed on the system. EPM will then
determine the appropriate init file directories to use and create any required symbolic links to support the init
script:

i 755 root sys foo foo.sh

The previous example creates an init script named foo on the end−user system and will create symbolic links
to run levels 0, 2, 3, and 5 as needed, using a sequence number of 00 (or 000) for the shutdown script and 99
(or 999) for the startup script.

To specify run levels and sequence numbers, use the runlevel(), start(), and stop() options:

i 755 root sys foo foo.sh "runlevel(02) start(50) stop(30)"

Software Distribution Using the ESP Package Manager

22 Variables

A − GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place − Suite 330, Boston, MA 02111−1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if
its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

A − GNU General Public License 23

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine−readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine−readable

Software Distribution Using the ESP Package Manager

24 A − GNU General Public License

copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty−free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made

Software Distribution Using the ESP Package Manager

A − GNU General Public License 25

generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Software Distribution Using the ESP Package Manager

26 A − GNU General Public License

END OF TERMS AND CONDITIONS

Software Distribution Using the ESP Package Manager

A − GNU General Public License 27

Software Distribution Using the ESP Package Manager

28 A − GNU General Public License

B − Command Reference

B − Command Reference 29

epm

Create software packages

Synopsis

epm [−a architecture] [−f format] [−g] [−k] [−n[mrs]] [−s setup.xpm] [−−output−dir directory] [
−−setup−image setup.xpm] [−−setup−program /foo/bar/setup] [−−setup−types setup.types] [−v] [
name=value name=value] product [listfile]

Description

epm generates software packages complete with installation, removal, and (if necessary) patch scripts. Unless
otherwise specified, the files required for product are read from a file named "product.list".

The −a option ("architecture") specifies the actual architecture for the software. Without this option the
generic processor architecture is used ("intel", "sparc", "mips", etc.)

The −f option ("format") specifies the distribution format:

aix
Generate an AIX distribution suitable for installation on an AIX system.

bsd
Generate a BSD distribution suitable for installation on a FreeBSD, NetBSD, or OpenBSD
system.

deb
Generate a Debian distribution suitable for installation on a Debian Linux system.

inst, tardist
Generate an IRIX distribution suitable for installation on an system running IRIX.

native
Generate an native distribution. This uses rpm for Linux, inst for IRIX, pkg for Solaris,
swinstall for HP−UX, bsd for FreeBSD, NetBSD, and OpenBSD, and osx for MacOS X. All
other operating systems default to the portable format.

osx
Generate a MacOS X software package.

pkg
Generate an ATTsoftware package. These are used primarily under Solaris.

portable
Generate a portable distribution based on shell scripts and tar files. The resulting distribution
is installed and removed the same way on all operating systems. [default]

rpm
Generate a Red Hat Package Manager ("RPM") distribution suitable for installation on a Red
Hat Linux system.

setld
Generate a Tru64 (setld) software distribution.

slackware
Generate a Slackware Linux software distribution.

swinstall, depot
Generate a HP−UX software distribution.

Software Distribution Using the ESP Package Manager

30 epm

Executable files in the distribution are normally stripped of debugging information when packaged. To disable
this functionality use the −g option.

Intermediate (spec, etc.) files used to create the distribution are normally removed after the distribution is
created. The −k option keeps these files in the distribution directory.

The −s and −−setup−image options ("setup") include the ESP Software Wizard with the specified XPM
image file with the distribution. This option is currently only supported by portable distributions.

The −−setup−program option specifies the setup executable to use with the distribution. This option is
currently only supported by portable distributions.

The −−setup−types option specifies the setup.types file to include with the distribution. This option is
currently only supported by portable distributions.

The −−output−dir option specifies the directory to place output file into. The default directory is based on the
operating system, version, and architecture.

The −v option ("verbose") increases the amount of information that is reported. Use multiple v's for more
verbose output.

Distributions normally are named "product−version−system−release−machine.ext" and
"product−version−system−release−machine−patch.ext" (for patch distributions.) The
"system−release−machine" information can be customized or eliminated using the −n option with the
appropriate trailing letters. Using −n by itself will remove the "system−release−machine" string from the
filename entirely.

Debian, IRIX, portable, and Red Hat distributions use the extensions ".deb", ".tardist", "tar.gz", and ".rpm"
respectively.

List Variables

EPM maintains a list of variables and their values which can be used to substitute values in the list file. These
variables are imported from the current environment and taken from the command−line and list file as
provided. Substitutions occur when the variable name is referenced with the dollar sign ($):

%install echo What is your name:
%install read $$name
%install echo Your name is $$name

f 0555 root sys ${bindir}/foo foo
f 0555 root sys $datadir/foo/foo.dat foo.dat

Variable names can be surrounded by curley brackets (${name}) or alone ($name); without brackets the name
is terminated by the first slash (/), dash (−), or whitespace. The dollar sign can be inserted using $$.

Known Bugs

EPM does not currently support generation of IRIX software patches.

Software Distribution Using the ESP Package Manager

epm 31

See Also

epm(1) − create software packages.

epminstall(1) − add a directory, file, or symlink to a list file.
mkepmlist(1) − make an epm list file from a directory.
epm.list(5) − epm list file format.

setup(1) − graphical setup program for the esp package manager.

Copyright

Copyright 1999−2003 by Easy Software Products, All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Software Distribution Using the ESP Package Manager

32 epm

epminstall

Add a directory, file, or symlink to a list file.

Synopsis

epminstall options file1 file2 ... fileN directory

epminstall options file1 file2

epminstall options −d directory1 directory2 ... directoryN

Description

epminstall adds or replaces a directory, file, or symlink in a list file. The default list file is epm.list and can
be overridden using the EPMLIST environment variable or the −−list−file option.

Entries are either added to the end of the list file or replaced in−line. Comments, directives, and variable
declarations in the list file are preserved.

Options

epminstall recognizes the standard Berkeley install command options:

−b
Make a backup of existing files (ignored, default for EPM.)

−c
BSD old compatibility mode (ignored.)

−g group
Set the group owner of the file or directory to group. The default group is "sys".

−m mode
Set the permissions of the file or directory to mode. The default permissions are 0755 for
directories and executable files and 0644 for non−executable files.

−o owner
Set the owner of the file or directory to owner. The default owner is "root".

−s
Strip the files (ignored, default for EPM.)

−−list−file filename.list
Specify the list file to update.

See Also

epm(1) − create software packages.
mkepmlist(1) − make an epm list file from a directory.
epm.list(5) − epm list file format.

Software Distribution Using the ESP Package Manager

epminstall 33

Copyright

Copyright 1999−2003 by Easy Software Products, All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Software Distribution Using the ESP Package Manager

34 epminstall

mkepmlist

Make an EPM list file from a directory.

Synopsis

mkepmlist [−g group] [−u user] [−−prefix directory] directory [... directory]

Description

mkepmlist recursively generates file list entries for files, links, and directories. The file list is send to the
standard output.

The −g option overrides the group ownership of the files in the specified directories with the specified group
name.

The −u option overrides the user ownership of the files in the specified directories with the specified user
name.

The −−prefix option adds the specified directory to the destination path. For example, if you installed files to
/opt/foo and wanted to build a distribution that installed the files in /usr/local, the following command would
generate a file list that is installed in /usr/local:

mkepmlist −−prefix=/usr/local /opt/foo >foo.list ENTER

See Also

epm(1) − create software packages.
epminstall(1) − add a directory, file, or symlink to a list file.
epm.list(5) − epm list file format.

Copyright

Copyright 1999−2003 by Easy Software Products, All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Software Distribution Using the ESP Package Manager

mkepmlist 35

setup

Graphical setup program for the ESP package manager.

Synopsis

setup [directory]

Description

setup provides a graphical installation interface for EPM−generated portable installation packages. It presents
a step−by−step dialog for collecting a list of packages to install and accepting any license agreements for
those packages.

setup searches for products in the current directory or the directory specified on the command−line.

Installation Types

The default type of installation is "custom". That is, users will be able to select from the list of products and
install them.

setup also supports other types of installations. The setup.types file, if present, defines the other installation
types.

See Also

epm(1) − create software packages.
setup.types(5) − epm gui setup types file format.

Copyright

Copyright 1999−2003 by Easy Software Products, All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Software Distribution Using the ESP Package Manager

36 setup

C − List File Reference

This appendix provides a complete reference for the EPM list file and setup types formats.

The EPM List File Format

Each EPM product has an associated list file that describes the files to include with the product. Comment
lines begin with the "#" character and are ignored. All other non−blank lines must begin with a letter, dollar
sign ("$"), or the percent sign ("%").

List File Directives

The following list describes all of the list file directives supported by EPM:

$name=value
Sets the named variable to value. Note: Variables set in the list file are overridden by
variables specified on the command−line or in the current environment.

%copyright copyright notice
Sets the copyright notice for the file.

%description description text
Adds a line of descriptive text to the distribution. Multiple lines are supported.

%format format [... format]
Uses following files and directives only if the distribution format is the same as format.

%format !format [... format]
Uses following files and directives only if the distribution format is not the same as format.

C − List File Reference 37

%if variable [... variable]
%if !variable [... variable]
%ifdef variable [... variable]
%ifdef !variable [... variable]
%elseif variable [... variable]
%elseif !variable [... variable]
%elseifdef variable [... variable]
%elseifdef !variable [... variable]
%else
%endif

Conditionally includes lines in the list file. The %if lines include the lines that follow if the
named variables are (not) defined with a value. The %ifdef lines include the lines that follow
if the named variables are (not) defined with any value. These conditional lines cannot be
nested.

%include filename
Includes files listed in filename.

%incompat product
%incompat filename

Indicates that this product is incompatible with the named product or file.
%install script or program

Specifies a script or program to be run after all files are installed. (This has been obsoleted by
the %postinstall directive)

%license license file
Specifies the file to display as the software license.

%packager name of packager
Specifies the name of the packager.

%patch script or program
Specifies a script or program to be run after all files are patched. (This has been obsoleted by
the %postpatch directive)

%postinstall script or program
%postinstall <scriptfile
%postinstall <<string

Specifies a script or program to be run after all files are installed.
%postpatch script or program
%postpatch <scriptfile
%postpatch <<string

Specifies a script or program to be run after all files are patched.
%postremove script or program
%postremove <scriptfile
%postremove <<string

Specifies a script or program to be run after removing files.
%preinstall script or program
%preinstall <scriptfile
%preinstall <<string

Specifies a script or program to be run before all files are installed.
%prepatch script or program
%prepatch <scriptfile
%prepatch <<string

Specifies a script or program to be run before all files are patched.
%preremove script or program
%preremove <scriptfile

Software Distribution Using the ESP Package Manager

38 C − List File Reference

%preremove <<string
Specifies a script or program to be run before removing files.

%product product name
Specifies the product name.

%readme readme file
Specifies a README file to be included in the distribution.

%remove script or program
Specifies a script or program to be run before removing files. (This has been obsoleted by the
%preremove directive)

%release number
Specifies the release or build number of a product (defaults to 0).

%replaces product
Indicates that this product replaces the named product.

%requires product
%requires filename

Indicates that this product requires the named product or file.
%vendor vendor or author name

Specifies the vendor or author of the product.
%version version number

Specifies the version number of the product.
%system system[−release] [... system[−release]]

Specifies that the following files should only be used for the specified operating systems and
releases.

%system !system[−release] [... system[−release]]
Specifies that the following files should not be used for the specified operating systems and
releases.

%system all
Specifies that the following files are applicable to all operating systems.

c mode user group destination source
C mode user group destination source

Specifies a configuration file for installation. The second form specifies that the file has
changed or is new and should be included as part of a patch. Configuration files are installed
as "destination.N" if the destination already exists.

d mode user group destination −
D mode user group destination −

Specifies a directory should be created when installing the software. The second form
specifies that the directory is new and should be included as part of a patch.

f mode user group destination source [nostrip()]
F mode user group destination source [nostrip()]

Specifies a file for installation. The second form specifies that the file has changed or is new
and should be included as part of a patch. If the "nostrip()" option is included, the file will not
be stripped before the installation is created.

f mode user group destination source/pattern [nostrip()]
F mode user group destination source/pattern [nostrip()]

Specifies one or more files for installation using shell wildcard patterns. The second form
specifies that the files have changed or are new and should be included as part of a patch. If
the "nostrip()" option is included, the file will not be stripped before the installation is
created.

i mode user group service−name source ["options"]
I mode user group service−name source ["options"]

Software Distribution Using the ESP Package Manager

C − List File Reference 39

Specifies an initialization script for installation. The second form specifies that the file has
changed or is new and should be included as part of a patch. Initialization scripts are stored in
/etc/software/init.d and are linked to the appropriate system−specific directories for run
levels 0, 2, 3, and 5. Initialization scripts must accept at least the start and stop commands.
The optional options following the source filename can be any of the following:
order(string)

Specifies the relative startup order compared to the required and used system
functions. Supported values include First, Early, None, Late, and Last (OSX only).

provides(name(s))
Specifies names of system functions that are provided by this startup item (OSX
only).

requires(name(s))
Specifies names of system functions that are required by this startup item (OSX
only).

runlevels(levels)
Specifies the run levels to use.

start(number)
Specifies the starting sequence number from 00 to 99.

stop(number)
Specifies the ending sequence number from 00 to 99.

uses(name(s))
Specifies names of system functions that are used by this startup item (OSX only).

l mode user group destination source
L mode user group destination source

Specifies a symbolic link in the installation. The second form specifies that the link has
changed or is new and should be included as part of a patch.

R mode user group destination
Specifies that the file is to be removed upon patching. The user and group fields are ignored.
The mode field is only used to determine if a check should be made for a previous version of
the file.

List Variables

EPM maintains a list of variables and their values which can be used to substitute values in the list file. These
variables are imported from the current environment and taken from the command−line and list file as
provided. Substitutions occur when the variable name is referenced with the dollar sign ($):

%postinstall <<EOF
echo What is your name:
read $$name
echo Your name is $$name
EOF

f 0555 root sys ${bindir}/foo foo
f 0555 root sys $datadir/foo/foo.dat foo.dat

Variable names can be surrounded by curley brackets (${name}) or alone ($name); without brackets the name
is terminated by the first slash (/), dash (−), or whitespace. The dollar sign can be inserted using $$.

Software Distribution Using the ESP Package Manager

40 The EPM List File Format

The setup.types File

The EPM setup program normally presents the user with a list of software products to install, which is called
a "custom" software installation.

If a file called setup.types is present in the package directory, the user will instead be presented with a list of
instal− lation types. Each type has an associated product list which determines the products that are installed
by default. If a type has no products associated with it, then it is treated as a custom installation and the user is
presented with a list of packages to choose from.

The setup.types file is an ASCII text file consisting of type and product lines. Comments can be inserted by
starting a line with the pound sign (#). Each installation type is defined by a line starting with the word TYPE.
Products are defined by a line starting with the word INSTALL:

TYPE Typical End−User Configuration
INSTALL foo
INSTALL foo−help
TYPE Typical Developer Configuration
INSTALL foo
INSTALL foo−help
INSTALL foo−devel
INSTALL foo−examples
TYPE Custom Configuration

In the example above, three installation types are defined. Since the last type includes no products, the user
will be presented with the full list of products to choose from.

Software Distribution Using the ESP Package Manager

The setup.types File 41

Software Distribution Using the ESP Package Manager

42 The setup.types File

D − Release Notes

This appendix lists the change log for each release of the EPM software.

Changes in EPM v3.7

Fixed init script support for Tru64 packages.•
AIX output now correctly generates the inventory file for files in /usr and /opt.•
The Slackware packaging code swapped the output directory and product name when generating the
post−install script.

•

RPM dependencies of the form "%requires package >= version" are now correctly written in the spec
file.

•

AIX output now correctly lists file sizes by directory and handles /opt properly.•
RPM output now correctly handles installing, upgrading, and removing init scripts.•
RPM output did not work with filenames that contained a dollar sign ($).•
Added Slackware packager support based upon a patch contributed by Alec Thomas.•
The file copy code reported write errors for the source filename and not the (correct) destination
filename.

•

Fixed the handling of absolute output directories when generating RPM packages.•
The configure script did not support the OPTIM environment variable for custom optimization
settings.

•

Portable packages updated the permissions of configuration files before they were copied.•
Portable installations did not remove empty installation directories when the remove script was run.•
Portable patch installation did not correctly determine when root or /usr files were present in the
patch.

•

OSX packages incorrectly looked in /System/Library for the init scripts instead of /Library.•

D − Release Notes 43

RPM building did not work properly when −−output−dir was specified using an absolute path.•
Made cosmetic changes to the setup/uninstall GUIs.•
The setup GUI did not support software patches.•
The documentation incorrectly specified runlevels() instead of runlevel().•
The portable distributions incorrectly used /usr/local/src/rc.d as a fallback location for init scripts.•

Changes in EPM v3.6

Added a GUI uninstall program to be distributed with portable distributions with a setup image.•
MacOS X portable packages now support graphical setup and uninstall using the Apple authorization
API.

•

Debian packages did not include the (required) trailing period when running the update−rc.d script.•
BSD packages now create directories using postinstall commands instead of listing them directly.
This should eliminate errors from the FreeBSD pkg_delete command.

•

File dependencies were incorrectly specified in RPM spec files.•
IRIX portable distributions didn't write the chkconfig commands properly.•
The mkepmlist utility didn't support files as well as directories.•
EPM didn't do variable expansion of imported files ("<foo.txt") or in−line data ("<<FOO")•
Now build gzip'd depot files as well as the tar.gz files when creating HP−UX software packages.•
Now correctly use −−libdir setting to locate the setup GUI.•
Now use rpmbuild command, if available, to build RPM files since newer versions of RPM may not
map the "−bb" option to build a package.

•

Now set the RPMDIR environment variable when building with older versions of RPM that don't
understand the "topdir_" variable.

•

Now handle dependencies of the form "package >= version" in Debian packages.•
Portable distributions that didn't have any files in /usr or in / would look for a non−existent .sw or .ss
file.

•

EPM's sample list file didn't include the man pages for setup or setup.types, and installed the epm list
file format man page in the wrong directories.

•

EPM would quote the ":" character in filenames but didn't need to.•
EPM tried to move the wrong RPM file on non−intel systems.•

Changes in EPM v3.5.1

OSX packages did not set the "install as root" package type, so package installation usually failed.•
OSX packages installed init scripts in /System/Library/StartupItems, but non−Apple packages should
be installed in /Library/StartupItems.

•

Added support for "requires(foo)", "uses(foo)", "provides(foo)", and "order(foo)" as options for init
scripts. These options are currently only used when creating OSX packages.

•

Changes in EPM v3.5

Added support for MacOS X package generation.•
No longer need/use RPMDIR when building RPMs, just set the "topdir_" variable in the spec file.•
The portable removal scripts didn't correctly write the list of init scripts to remove.•
Added a new −−output−dir option contributed by Geoffrey Wossum.•
Not all implementations of the "id" command support the "−u" option, so EPM now looks at the
default output.

•

RPM dependencies with a single version number didn't get written to the spec file properly.•

Software Distribution Using the ESP Package Manager

44 Changes in EPM v3.6

Added support for file options − nostrip(), runlevel(12345), start(nn), and stop(nn).•
Filenames can now contain spaces, either by putting the full name in quotes ("file with spaces") or
using the backslash character (file\ with\ spaces).

•

The mkepmlist utility didn't handle symlinks properly.•
BSD packages needed to list the directories to remove separately and in reverse order.•

Changes in EPM v3.4

No longer install init scripts in run levels 2 and 5 under Solaris, which runs all init scripts in each run
level.

•

The tar files produced by EPM didn't conform to the POSIX 1003.1 spec. EPM now puts the POSIX
version number (00) and supports "long" filenames up to 255 characters in length.

•

AIX packages did not use the correct path for files placed in the root partition.•
Now install init scripts for *BSD in /usr/local/etc/rc.d.•
Portable installation scripts now issue chown and chgrp commands for all installed files that are not
owned by user root.

•

No longer use or pad empty tar files, which saves 5k of disk space per distribution.•

Changes in EPM v3.3

UnixWare 7 needs the absolute path when transferring an AT&T package directory to a .pkg file.•
Now use the "id" command (POSIX) instead of "whoami" (BSD) to check that the installing user is
root.

•

Various fixes for OpenServer.•
Now use the "−ln" option when checking for the size of the distribution files in portable distributions.•
New C implementation of mkepmlist, based on a contribution from Andreas Voegele.•
The portable install and patch scripts now change the permissions of the installed "remove" script to
544.

•

The wildcard character * did not match 0 characters if the pattern and the filename string differed
only by the trailing * (e.g. "Courier" and "Courier*").

•

IRIX pre/postremove scripts are now copied after installation so that they can be executed when
removing the inst/tardist package.

•

HP−UX postinstall/preremove scripts would execute init scripts from /sbin/init.d/sbin/init.d.•
The copyright string wasn't being quoted in portable installation scripts.•
EPM now checks to see if an executable file is a shell script before running the "strip" command.•

Changes in EPM v3.2.1

The check for Darwin (MacOS X) in the portable installation scripts was using "==" instead of just
"=".

•

Changes in EPM v3.2

Added "SHELL=/bin/sh" line to portable installation, patch, and remove scripts in case the root shell
is not /bin/sh or a compatible shell.

•

The epminstall utility didn't support the EPMLIST environment variable as documented.•
The "native" distribution format is now "deb" if the "dpkg" command is installed in /usr/bin.•
Debian packages did not use the release number in the Version: keyword.•

Software Distribution Using the ESP Package Manager

Changes in EPM v3.4 45

Changed the portable installation script support for init scripts to look for scripts in both rc2.d and
rc3.d, and to check for the existence of all rc directories before installing into them.

•

Changed the portable installation script to prepend /bin, /usr/bin, and /usr/ucb to the beginning of the
PATH variable so the "tar", "rm", and "mv" commands can be found in whatever directory the local
system uses.

•

AIX packaging now works.•
Added support for the Darwin (MacOS X) tar command in portable packages (sudo ./foo.install :)•
IRIX inst packages incorrectly had the postinstall commands in the preinstall and removal scripts.•
The setup GUI now requires FLTK 1.1.x.•

Changes in EPM v3.1

Added support for "<<end ... end" and "<filename" to insert descriptions and commands in−line and
from a file.

•

Added new −−software−dir option which specifies the location of the EPM software directory
(default /etc/software).

•

Added new %if, %ifdef, %elseif, %elseifdef, %else, and %endif directives for list files (addition
contributed by J. Nordell.)

•

The GUI setup program left the "Next" button enabled after the license check.•
Fixed the dependency strings created for HP−UX swinstall (fix contributed by R. Begg.)•
Wasn't installing the man pages in section 5.•
When generating Debian packages, the DEBIAN directory might not have the correct permissions due
to a restrictive umask. EPM now forces the correct permissions for the package archive.

•

HP−UX swinstall packages now use the prerequisites rule instead of corequisites to ensure that the
%requires dependency is enforced.

•

Dependencies for Debian packages are now listed on a single line per type rather than one line per
dependency.

•

EPM now detects RPM 4.0.3, which (mysteriously) now uses "−−target arch" instead of
"−−target=arch".

•

Changes in EPM v3.0

Added new documentation.•
Added new "−a arch" option to support specific architectures (e.g. i586, i686, ultrasparc, etc.)•
Added support for the *BSD package format using pkg_create.•
Added support for the AIX package format using the backup program.•
Added new epminstall utility to build list files from "make install" targets.•
Added snprintf/vsnprintf functions for systems that don't provide them, and use snprintf and vsnprintf
for all formatted strings that aren't just numbers.

•

Added new run_command() function to replace use of system() function.•
Added new %provides directive.•
Revamped the setup GUI, including support for installation types in the setup GUI, so that you can
select groups of products or choose a custom installation.

•

The mkepmlist utility had a bad regular expression that thought that any argument (directory names,
etc.) with a dash ("−") in it was an unsupported option.

•

Fixed a bug in the removal script: config files were removed by the remove script...•
Changed the config file install logic to copy the new config file (instead of moving it), so that an
unchanged config file can be detected and removed. This provides the best of both worlds: unchanged
config files are update automatically by an upgrade/install, while changed ones are preserved.

•

Software Distribution Using the ESP Package Manager

46 Changes in EPM v3.1

Changes in EPM v2.8

The line breaking code did not include an extra space, so filenames in the portable install/patch/
remove scripts would be joined instead of separated.

•

The setup GUI did not allow the user to toggle a software product for distribution if the product was
selected (nav box around it).

•

The mkepmlist program didn't get the permissions of each file (just the parent directory.)•
The portable installation scripts used the −L or −h option to test for symlinks with the test command.
The choice of option was based on the build platform, making the script non−portable. Now use −h
exclusively since it is supported on all UNIX's we have access to, even with GNU test even though it
isn't documented...

•

Changes in EPM v2.7

Fixed a bug in the configuration script with the −−with−fltk−includes option.•
Tru64 UNIX distributions now use the name "tru64" instead of "dunix". "dunix" is still supported in
list files for compatibility with old list files.

•

Added support for portable scripts under AIX.•
Fixed the space checking code in portable installation scripts.•
Now break up long lines in the portable install/patch/ remove scripts.•

Changes in EPM v2.6

Changed the automatic version number generation code to properly handle patch, beta, and pre
releases.

•

Added support for release numbers in RPM files.•
Added support for version number ranges in dependencies, either as "low−version high−version", "<
version", or "> version".

•

Eliminated some GCC warnings about using a char to index into an array.•
Added a disk space check to the portable installation scripts.•
Added a new mkepmlist utility, based on a Perl script by Christian Lademann.•
Added a "keep files" option (−k) to epm to keep the intermediate (spec, etc.) files around after
building the binary distribution.

•

Added support for Tru64 UNIX software packages (setld).•
Patch distributions were incorrectly backing up the original files, causing the original backup to be
lost.

•

Pre/post install/remove scripts were not using the right filename for Solaris PKG distributions.•

Changes in EPM v2.5

Added support for pre−install, post−install, pre−patch, post−patch, pre−remove, and post−remove
commands.

•

There was no way to use a literal $ in scripts or in filenames. Use $$ to include a single $.•
The config and license file support for AT&T software packages did not check to see if the source file
had an absolute path. This would produce an invalid prototype file.

•

The RPM −−target option was not being called with an equal sign, which caused problems with RPM
4.0.

•

Updated the Debian packager to use the prerm and postrm script names to match reality.•
Updated the Debian packager to support the Replaces dependency.•

Software Distribution Using the ESP Package Manager

Changes in EPM v2.8 47

Updated the portable and RPM distributions to check for the new SuSE 7.1 init.d directories.•
RPM distributions now use %config(noreplace) for config files, to duplicate the behavior that is
expected.

•

The portable scripts now use the autoconf echo test to determine the proper options for echo (−n or
\c), rather then hardcoding this based on the build system.

•

Changes in EPM v2.4

The [] wildcard matching did not skip over the character that was matched. This prevented matches in
most cases...

•

Changes in EPM v2.3

Fix for an incredibly stupid bug in the portable distribution code − was using ! instead of ~ to mask
off the write permission bits in the distribution archive.

•

Now use getpwuid() instead of getlogin() to get the username of the packager.•
The RPM distributions now use the same init.d script logic as portable distributions. This should
make them portable to all known Linux distributions as well as avoid a *very* nasty installer bug in
RedHat 7.0.

•

The HP−UX swinstall code did not properly handle directories or config files.•
The [] wildcard matching rule did not accept ranges (e.g. "[a−z]", "[0−9]", etc.)•
Added VPATH support and distribution targets to Makefile.•
Added support for defining variables in list files; the format is "$name=value".•
The variable expansion code didn't check for ${name}.•

Changes in EPM v2.2

New HTML documentation files.•
Updated the BuildRoot directive in RPM spec files to be an absolute path; RedHat 6.2's version of
RPM adds a leading slash otherwise.

•

IRIX defaults to run level 2...•
The setup GUI now displays an error message if run by a non−root user.•
The setup GUI now provides "Install All" and "Install None" buttons in the software selection pane.•
Added a "native" distribution format to select the native format for a particular OS (Linux defaults to
RPM format...)

•

The tar file generation code now always appends at least 2 zeroed blocks to the end of the archive.
This eliminates error messages from Solaris tar and seems to be compatible with all other tar
programs.

•

Added the SuSE RPM directory to the standard search path.•
Added support for a new %packager directive.•
The strip command used was redirecting stderr before redirecting stdout.•
The portable distributions now set the umask to avoid problems with buggy tar programs and Linux
distributions.

•

Added command−line option to specify the location of the setup program.•
Added support for wildcards in source filenames.•
The OS version number is now truncated to only contain the major and minor release numbers.•

Software Distribution Using the ESP Package Manager

48 Changes in EPM v2.4

Changes in EPM v2.1

Moved setup program to /usr/lib/epm ($prefix/lib/epm) to avoid name clash with RedHat setup
program.

•

Added Debian distribution files from Jeff Licquia.•
Configure script changes for GCC 2.95.x and Solaris.•
Portability fixes.•
Now look for RPMS in different "standard" locations after building them; the RPMDIR environment
variable can be used to override the default locations.

•

The sample project list file (epm.list) was missing from the 2.0 distribution.•
Now check for write permission in /usr by writing a test file (/usr/.writetest); this should make
diskless client installations more reliable.

•

Added support for variables on the command line (name=value); insert into project filenames using
$name.

•

Variable expansion is now done on all lines and fields. This allows variables to be used in scripts and
in the permissions field, for example.

•

Now only specify run levels 0 and 3 for init scripts (0, 3, and 5 for Linux.)•
Now support init scripts in /sbin/init.d and /sbin/init.d/rcN.d (SuSE.)•
RPM distributions should now work OK for non−Red Hat based systems, in particular for init scripts.•
PKG distributions are now also generated in the "package stream" format as well as the directory and
tar.gz file formats.

•

Changes in EPM v2.0

New "−f" option to generate vendor−specific software distributions. Now support AT&T, Debian,
HP−UX, IRIX, and Red Hat software distributions.

•

New "−s" option to include the ESP Software Wizard (GUI) with portable distributions.•
The "−t" option (test) is no longer supported.•
New "−v" option to control the amount of information that is reported.•
New graphical setup program for portable distributions.•
New "description" directive.•
New "format" directive.•
New "include" directive.•
New "replaces" directive.•
Portable distributions should now be more portable.•

Changes in EPM v1.7

The %requires and %incompat directives now support specification of files as well as products.•
The init script installation code now creates a link in the init.d subdirectory to avoid frustrating
well−trained fingers.

•

The progress messages for shared and non−shared software were the same.•

Changes in EPM v1.6

Installation archives were missing the ".ss" and ".pss" files that were added to support diskless
installations.

•

The scripts didn't handle removing distributions that had no non−shared components.•

Software Distribution Using the ESP Package Manager

Changes in EPM v2.1 49

The scripts didn't return a non−zero exit status if the user did not agree with the license or want to
install.

•

Changes in EPM v1.5

Now support diskless installations; all files destined for /usr are put in a separate archive and are
installed (or removed) only if /usr is read+write.

•

Changes in EPM v1.4

Now map group "sys" to "system" for Digital UNIX and "root" for Linux.•
The initialization script installation now checks for the presence of run levels 4 and 5.•

Changes in EPM v1.3

Now use the "p" option to tar to ensure that file permissions are created properly. This is normally the
default for the super−user, but not under Digital UNIX!

•

Initialization scripts are now linked to run levels 0, 2, 3, 4, and 5.•

Changes in EPM v1.2

Patch distributions were not correctly named.•
Added new "initialization script" file types "i" and "I". The new file types place the scripts in
/etc/software/init.d and make links to the appropriate system−specific rc.d directories and run the
scripts to start and stop things accordingly.

•

Changes in EPM v1.1

The "whoami" command isn't always in the user's path, so scripts now use a hard−coded path (setup
by the configure script) to the program.

•

Added a check for IRIX64 (64−bit kernel instead of n32.)•
The %system directive now supports release numbers, e.g. "irix−6.5".•
The %system directive now supports "!" (not) operator so you can do things like "%system irix
!irix−6.5" to select any IRIX release except IRIX 6.5.

•

Files that already exist on the system are renamed to "filename.O" on installation and back to
"filename" when removed (except for config files, which don't overwrite and aren't removed.)

•

Prerequisites (%required directive) now look for required product in the current directory and install it
automatically if it is available and not already installed.

•

The copyright notice in the installation script was not displayed if the user used the "now" option.•

Software Distribution Using the ESP Package Manager

50 Changes in EPM v1.5

	Table of Contents
	Preface
	Organization of this Manual
	Notation Conventions
	Abbreviations
	Other References

	1 - Introduction to EPM
	What is EPM?
	History and Evolution
	Existing Software Packaging Systems
	Design Goals of EPM
	Resources

	2 - Building EPM
	Requirements
	Configuring the Software
	Building the Software
	Installing the Software

	3 - Packaging Your Software with EPM
	The Basics
	Building a Software Distribution
	Installing the Software Package
	Including the Setup GUI

	4 - Advanced Packaging with EPM
	Including Other List Files
	Conflicts, Provides, Replaces, and Requires
	Scripts
	Conditional Directives
	Protecting Object Files from Stripping
	Software Patches
	Variables
	Init Scripts

	A - GNU General Public License
	B - Command Reference
	epm
	epminstall
	mkepmlist
	setup

	C - List File Reference
	The EPM List File Format
	The setup.types File

	D - Release Notes
	Changes in EPM v3.7
	Changes in EPM v3.6
	Changes in EPM v3.5.1
	Changes in EPM v3.5
	Changes in EPM v3.4
	Changes in EPM v3.3
	Changes in EPM v3.2.1
	Changes in EPM v3.2
	Changes in EPM v3.1
	Changes in EPM v3.0
	Changes in EPM v2.8
	Changes in EPM v2.7
	Changes in EPM v2.6
	Changes in EPM v2.5
	Changes in EPM v2.4
	Changes in EPM v2.3
	Changes in EPM v2.2
	Changes in EPM v2.1
	Changes in EPM v2.0
	Changes in EPM v1.7
	Changes in EPM v1.6
	Changes in EPM v1.5
	Changes in EPM v1.4
	Changes in EPM v1.3
	Changes in EPM v1.2
	Changes in EPM v1.1

