Ice 3.6.4 Documentation

Lolce Manual 15
L1.11CE OVEIVIEW . . .ottt et e e e e e e e e e 17
1.1.11ce ArChiItECIUNE . . . o o e 18
1.1 1.1 TerminOIOgY . ..o ottt et 19
1.1.1.2 Slice (Specification Language for ICe) 26
1.1.1.3 Overview of the Language Mappingsottt e 27
1.1.1.4 Client and Server SIrUCIUIEttt e e e e i 28
1.1.1.5 Overview of the Ice Protocol 30
1.1.2/1Ce SErVICES OVEIVIEBW . . oottt ettt et ettt e et e e e et e e 31
1.1.3 Architectural Benefits 0f IC& 33
1.2 Hello World AppliCatioNo e e e e e e e e 34
1.2.1 Writing @ Slice Definition 35
1.2.2 Writing an Ice Application with C++ 36
1.2.3 Writing an Ice Application with C-Sharp 43
1.2.4 Writing an Ice Application with Java 50
1.2.5 Writing an Ice Application with JavaScript 57
1.2.6 Writing an Ice Application with Objective-C 60
1.2.7 Writing an Ice Application with PHP 67
1.2.8 Writing an Ice Application with Python 70
1.2.9 Writing an Ice Application with RUDY 75
1.2.10 Writing an Ice Application with Visual BasiC 78
1.3 The SlICE LANQUAGEt ottt e e et e e e e e e e e e e 86
1.3.1 Slice Compilationo e e 87
1.3.2Slice SOUrCe Files 90
1.3.3Lexical RUIES 93
L1.3.4 MOUIES .. 95
13,5 BaSIC TYPES . .ttt et e e 97
1.3.6 User-Defined TYPeS . ..ot e 99
1.3.6.1 ENUMETAtIONS . . . oottt e e 100
L1.3.6.2 SHUCIUIES . .ottt e e e e e 102
1.3.6.3 SEOUENCES . oottt ettt et e e e e e 104
1.3.6.4 DICHIONANIES . . . oottt et e e 106
1.3.7 Constants and LIterals 108
1.3.8 Interfaces, Operations, and EXCEPLIONSot 112
L1.3.8. 1 OPEIAtIONS . . o ot e ittt e e e e e e e e e e 113
1.3.8.2 USEr EXCEPLIONS . . .ottt e e e e e e 118
1.3.8.3 RUN-TIME EXCEPLIONS . . . ot ittt e et e e e e e e e e e e e e 123
1.3.8.4 Proxies for Ice ODbjJeCtsSo 128
1.3.8.5 Interface INheritance 130
130 ClaSSES . ittt 138
1.3.9.1 SIMPIE ClaSSESttt 139
1.3.9.2 Class INheritanCe 141
1.3.9.3 Class Inheritance SemantiCsttt 143
1.3.9.4 Classes as UNIONSottt e e 145
1.3.9.5 Self-Referential Classes 146
1.3.9.6 Classes VErsuS SIUCIUIESttt e e e 149
1.3.9.7 Classes With OPerationsttt e e e e 150
1.3.9.8 Architectural Implications of ClasSes 152
1.3.9.9 Classes Implementing INterfaceso 154
1.3.9.10 Class Inheritance LImItations 157
1.3.9.11 Pass-by-Value Versus Pass-by-Reference 158
1.3.9.12 Passing Interfaces by Value 160
1.3.9.13 Classes with Compact TYPE IDSttt e 161
1.3.10 Forward Declarations 162
1.3.11 Optional Data Members 163
1. 3. 02 TYPE DS .ottt e e 166
1.3.13 Operations 0N ObJECtttt 167
13,04 LOCaAl TY PSS . .t ittt et et e e e e 169
1.3.15 Names @nd SCOPING . .« vttt et e i e e e e e e e e e e e e e 170
L3 A6 Metadatao 181
1.3.17 Serializable ObJeCtS 182
1.3.18 Deprecating Slice Definitions 184
1.3.19 Using the Slice Compilers e e 185
1.3.20 Slice CheCKSUMS e e e e e 187
1.3.21 Generating Slice DOCUMENALIONt e e e e e 188
1.3.22 SliCe KEYWOIAS . . oottt et e e e e e e 194
1.3.23 Slice Metadata DIreCliVES e 195
1.3.24 Slice for a Simple File System 203
1.4 Language Mappings . ..o v ottt e e e e e e e e e 207
142 Gt MaPPINg .ottt e e e e e e e 208
1.4.1.1 Client-Side Slice-to-C++ Mappingottt e e e e 209
1.4.1.1.1 C++ Mapping for Identifiers e 210

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.4.1.1.2 C++ Mapping for Modules e 211
1.4.1.1.3 C++ Mapping for Built-In TYPes e 212
1.4.1.1.4 C++ Mapping for ENUMErationSt e 215
1.4.1.1.5 C++ Mapping for StrUCLUIESt e e e e 216
1.4.1.1.6 C++ Mapping for SEQUENCESttt e 221
1.4.1.1.7 C++ Mapping for DICIONAIESt e e 225
1.4.1.1.8 C++ Mapping for CONStaNtSt e e 227
1.4.1.1.9 C++ Mapping for EXCEPLIONS ot e 229
1.4.1.1.10 C++ Mapping for Interfaces 234
1.4.1.1.11 C++ Mapping for Operationst 243
1.4.1.1.12 C++ Mapping for Optional Values e 253
1.4.1.1.13 C++ Mapping for Classest e 256
1.4.1.1.14 Smart Pointers for Classes 265
1.4.1.1.15 Asynchronous Method Invocation (AMI) in C++ e 279
1.4.1.1.16 Using Slice Checksums in CH+ e e 294
1.4.1.1.17 Example of a File System Clientin C++ e 295
1.4.1.2 Server-Side Slice-to-C++ Mappingottt 300
1.4.1.2.1 The Server-Side main Function in C++ 301
1.4.1.2.2 Server-Side C++ Mapping for Interfaces i 313
1.4.1.2.3 Parameter Passing in CH+ e 316
1.4.1.2.4 Raising EXCeptions iN CH4 ..o 318
1.4.1.2.5 Object Incarnation in CH+ e 319
1.4.1.2.6 Asynchronous Method Dispatch (AMD) in C++ e 324
1.4.1.2.7 Example of a File System Serverin C++ e 329
1.4.1.3 Customizing the C++ Mappingottt e e 348
1.4.1.3.1 The C++ Stream Helpers e 349
1.4.1.3.2 The cpp:type and cpp:view-type Metadata Directivesc. ... 357
1.4.1.4 Version Information in CH+ 370
1.4.1.5 slice2cpp Command-Line OPLioNS ot 371
1.4.1.6 C++ Strings and Character ENCOAINGottt e e 378
1.4.1.6.1 Installing String CONVEIEISot e e e e e 379
1.4.1.6.2UTF-8 CONVEISION ...\ttt et et et e e e e e e 381
1.4.1.6.3 String Parametersin Local Calls e 382
1.4.1.6.4 BuUilt-in String CONVEIMEIS ot e e e e e 383
1.4.1.6.5 String Conversion Convenience FUNCLIONS e 384
1.4.1.6.6 The iconv String CONVEIErottt e e e e 386
1.4.1.6.7 The Ice String Converter PIUg-iN e 387
1.4.1.6.8 Custom String Converter PIUG-INSt e e 389
1.4.1.7 The C++ Utility LiDraryo e 390
1.4.1.7.1 Threads and Concurrency With C++ e 391
1.4.1.7.2 The C++ AbstractMutex Class i e 425
1.4.1.7.3 The C++ Cache Template e 428
1.4.1.7.4The C++ EXCeption Classt 430
1.4.1.7.5 The C++ generateUUID FUNCLIONot e 431
1.4.1.7.6 The C++ Handle Template e e 432
1.4.1.7.7 The C++ Handle Template Adaptorsot e 436
1.4.1.7.8 The C++ ScopedArray Template e 443
1.4.1.7.9 The C++ Shared and SimpleShared Classes 446
141710 The C++ TIME Class e 447
1.4.1.7.11 The C++ Timer and TimerTask Classes 451
1.4.2 C-Sharp Mappingvo ottt e e e e e e e e 453
1.4.2.1 Client-Side Slice-to-C-Sharp Mappingot e 454
1.4.2.1.1 C-Sharp Mapping for Identifiers 455
1.4.2.1.2 C-Sharp Mapping for Modules e 456
1.4.2.1.3 C-Sharp Mapping for Built-In TYPes e 458
1.4.2.1.4 C-Sharp Mapping for EnumMerationst 459
1.4.2.1.5 C-Sharp Mapping for STITUCIUIESot e e 460
1.4.2.1.6 C-Sharp Mapping for SEQUENCESttt e e 466
1.4.2.1.7 C-Sharp Mapping for DICtionariest e 470
1.4.2.1.8 C-Sharp Collection COMPAriSONttt e e e 472
1.4.2.1.9 C-Sharp Mapping for CONStantst e 473
1.4.2.1.10 C-Sharp Mapping for EXCEptions i e 476
1.4.2.1.11 C-Sharp Mapping for Interfaces 481
1.4.2.1.12 C-Sharp Mapping for Operationsttt e 489
1.4.2.1.13 C-Sharp Mapping for Classesot e 498
1.4.2.1.14 C-Sharp Mapping for Optional Values e 509
1.4.2.1.15 Serializable Objects in C-Sharp e 511
1.4.2.1.16 C-Sharp Specific Metadata DireCtivesot 513
1.4.2.1.17 Asynchronous Method Invocation (AMI) in C-Sharp 514
1.4.2.1.18 slice2cs Command-Line OptionNs 530
1.4.2.1.19 Using Slice Checksums in C-Sharpt e 531
1.4.2.1.20 Example of a File System Clientin C-Sharp i 532

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.4.2.2 Server-Side Slice-to-C-Sharp Mappingottt 537
1.4.2.2.1 The Server-Side main Method in C-Sharp e 538
1.4.2.2.2 Server-Side C-Sharp Mapping for Interfaces 545
1.4.2.2.3 Parameter Passing in C-Sharpt e 549
1.4.2.2.4 Raising EXceptions in C-Sharpt e 551
1.4.2.25Tie Classes iN C-Sharp e e 552
1.4.2.2.6 Object Incarnation in C-Sharpt e e 556
1.4.2.2.7 Asynchronous Method Dispatch (AMD) in C-Sharp it 560
1.4.2.2.8 Example of a File System Serverin C-Sharp e 565

1.4.2.3 The .NET Utility LiDrary e e 576

1.4.3JaVa MapPing . .ottt e 578

1.4.3.1 Client-Side Slice-to-Java Mappingottt e e 579
1.4.3.1.1 Java Mapping for ldentifiers 580
1.4.3.1.2 Java Mapping for Modules e 581
1.4.3.1.3 Java Mapping for BUilt-In TYpesSo e 582
1.4.3.1.4 Java Mapping for ENUMerationsttt e 583
1.4.3.1.5 Java Mapping for StrUCIUIESt e e e 585
1.4.3.1.6 Java Mapping fOor SEQUENCESttt it e e e e 588
1.4.3.1.7 Java Mapping for DICtIONAreSt e 589
1.4.3.1.8 Java Mapping for CONStaNtSot 590
1.4.3.1.9 Java Mapping for EXCEPLIONS ot e 592
1.4.3.1.10 Java Mapping for Interfaces e 596
1.4.3.1.11 Java Mapping for Operationsttt e e 605
1.4.3.1.12 Java Mapping for ClasSest e 615
1.4.3.1.13 Java Mapping for Optional Data Members 624
1.4.3.1.14 Serializable ObJeCtS iNn Javat e 628
1.4.3.1.15 Customizing the Java Mappingttt e 630
1.4.3.1.16 Asynchronous Method Invocation (AMI)inJavauiii i 642
1.4.3.1.17 Using the Slice Compiler forJavaot e 655
1.4.3.1.18 slice2java Command-Line OPtioNSttt e e 656
1.4.3.1.19 Using Slice ChecksumsS iN JAVAttt e e 657
1.4.3.1.20 Example of a File System Clientin Javat 658

1.4.3.2 Server-Side Slice-to-Java Mappingottt 663
1.4.3.2.1 The Server-Side main Method inJavat 664
1.4.3.2.2 Server-Side Java Mapping for Interfaces 671
1.4.3.2.3 Parameter Passing in JaVat e 675
1.4.3.2.4 Raising EXCeptioNS iN Javattt e 678
1.4.3.25Tie ClasseS iNJaVattt e e 680
1.4.3.2.6 Object Incarnation iN JaVattt e 685
1.4.3.2.7 Asynchronous Method Dispatch (AMD) inJavau i 689
1.4.3.2.8 Example of a File System ServerinJavau e 694

1.4.3.3 The Java Utility LIDrary e 705

1.4.3.4 Custom Class LoAders i 708

1.4.3.5 JaVa INTEITUDPES . . oottt e e 709

1.4.4 JavaScCript MapPiNg . . .ottt e e e e e 711

1.4.4.1 Asynchronous APIS iN JAVASCIIPLt 713

1.4.4.2 Client-Side Slice-to-JavaScript MappiNgo ottt e 714
1.4.4.2.1 JavaScript Mapping for Identifiers 715
1.4.4.2.2 JavaScript Mapping for Modules 716
1.4.4.2.3 JavaScript Mapping for Built-In Types e 718
1.4.4.2.4 JavaScript Mapping for Enumerations 719
1.4.4.2.5 JavaScript Mapping for StruCtures e 721
1.4.4.2.6 JavaScript Mapping for SEQUENCES i e 723
1.4.4.2.7 JavaScript Mapping for Dictionariesot e 724
1.4.4.2.8 JavaScript Mapping for Constants e 727
1.4.4.2.9 JavaScript Mapping for EXCEptions e 729
1.4.4.2.10 JavaScript Mapping for Interfaces 732
1.4.4.2.11 JavaScript Mapping for Operationsot e 739
1.4.4.2.12 JavaScript Mapping for Classes e 755
1.4.4.2.13 slice2js Command-Line OptioNSt e 762

1.4.4.3 Server-Side Slice-to-JavaScript Mapping oottt 763
1.4.4.3.1 Server-Side JavaScript Mapping for Interfaces 764
1.4.4.3.2 Parameter Passing in JavaScCriptt 767
1.4.4.3.3 Raising EXceptions in JavaScCriptt e 769
1.4.4.3.4 Object Incarnation in JavaSCriptttt e 770
1.4.4.3.5 Asynchronous Method Dispatch (AMD) in JavaScripto it 774

1.4.5 Objective-C Mappingottt e e e 778

1.4.5.1 Client-Side Slice-to-Objective-C Mappingottt e 779
1.4.5.1.1 Objective-C Mapping for Modules e 780
1.4.5.1.2 Objective-C Mapping for Identifiers 782
1.4.5.1.3 Objective-C Mapping for BUilt-In TYPeS e 784
1.4.5.1.4 Objective-C Mapping for ENUMErationsttt e 785

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.4.5.1.5 Objective-C Mapping for StrUCIUIES i e e e 786
1.4.5.1.6 Objective-C Mapping for SEQUENCESottt e e 790
1.4.5.1.7 Objective-C Mapping for DIiCtiONAriesot e e 794
1.4.5.1.8 Objective-C Mapping for ConStantst e 796
1.4.5.1.9 Objective-C Mapping for EXCEPLIONS oot e 798
1.4.5.1.10 Objective-C Mapping for Interfaces e 806
1.4.5.1.11 Objective-C Mapping for Operationst e e 811
1.4.5.1.12 Objective-C Mapping for Local Interfaces i 823
1.4.5.1.13 Objective-C Mapping for Classest 824
1.4.5.1.14 Objective-C Mapping for Interfaces by Value i 835
1.4.5.1.15 Objective-C Mapping for Optional Data Members, 836
1.4.5.1.16 Asynchronous Method Invocation (AMI) in Objective-C 837
1.4.5.1.17 slice2objc Command-Line OPtioNSottt e 847
1.4.5.1.18 Example of a File System Clientin Objective-C i 848
1.4.5.2 Server-Side Slice-to-Objective-C Mappingo vttt 853
1.4.5.2.1 The Server-Side main Function in Objective-C e 854
1.4.5.2.2 Server-Side Objective-C Mapping for Interfaces 857
1.4.5.2.3 Parameter Passing in Objective-C e 861
1.4.5.2.4 Raising Exceptions in Objective-C e 863
1.4.5.2.5 Object Incarnation in Objective-C e 864
1.4.5.2.6 Example of a File System Server in Objective-C i 868
1.4.6 PHP Mapping ..ottt e e e e e e e 883
1.4.6.1 Client-Side Slice-to-PHP Mappingot e e 884
1.4.6.1.1 PHP Mapping for Identifiers 885
1.4.6.1.2 PHP Mapping for MOdUIES 886
1.4.6.1.3 PHP Mapping for Built-In Types i e 887
1.4.6.1.4 PHP Mapping for EnUmMerations i 888
1.4.6.1.5 PHP Mapping for SIrUCIUrESot e e e e 890
1.4.6.1.6 PHP Mapping for SEQUENCESot e e e 892
1.4.6.1.7 PHP Mapping for DICtionaries 893
1.4.6.1.8 PHP Mapping for CONSIantSt e e 894
1.4.6.1.9 PHP Mapping for EXCEptioNs e 896
1.4.6.1.10 PHP Mapping for Interfaces e 900
1.4.6.1.11 PHP Mapping for Operationsttt e e 907
1.4.6.1.12 PHP Mapping for Classesttt e 914
1.4.6.1.13 slice2php Command-Line OptionNst e 922
1.4.6.1.14 Application Notes for PHP 923
1.4.6.1.15 Using Slice Checksums in PHP 930
1.4.6.1.16 Example of a File System Clientin PHP e 931
1.4.7 PYthon Mapping . ..ottt e e e e e e 936
1.4.7.1 Client-Side Slice-to-Python Mappingt 937
1.4.7.1.1 Python Mapping for Identifiers e 938
1.4.7.1.2 Python Mapping for Modules e 939
1.4.7.1.3 Python Mapping for Built-In Types e 940
1.4.7.1.4 Python Mapping for Enumerations 941
1.4.7.1.5 Python Mapping for StruCtures e 944
1.4.7.1.6 Python Mapping for SEQUENCES ot e 946
1.4.7.1.7 Python Mapping for Dictionariest 949
1.4.7.1.8 Python Mapping for Constants it e 950
1.4.7.1.9 Python Mapping for EXCEpLioNSot e 952
1.4.7.1.10 Python Mapping for Interfaces e 956
1.4.7.1.11 Python Mapping for Operationsttt i 963
1.4.7.1.12 Python Mapping for Classest e 970
1.4.7.1.13 Asynchronous Method Invocation (AMI) in Python i 978
1.4.7.1.14 Code Generation in PYthOn 987
1.4.7.1.15 Using Slice Checksums in Python e 997
1.4.7.1.16 Example of a File System Clientin Python i 998
1.4.7.2 Server-Side Slice-to-Python Mappingttt 1003
1.4.7.2.1 The Server-Side main Program in Python e 1004
1.4.7.2.2 Server-Side Python Mapping for Interfaces i 1010
1.4.7.2.3 Parameter Passing in Python 1013
1.4.7.2.4 Raising Exceptions in Python 1015
1.4.7.2.5 Object Incarnation in Python 1016
1.4.7.2.6 Asynchronous Method Dispatch (AMD) in Python i 1020
1.4.7.2.7 Example of a File System Serverin Python 1024
1.4.8 RUDY MappiNg . ..ottt 1034
1.4.8.1 Client-Side Slice-to-Ruby Mappingt e 1035
1.4.8.1.1 Ruby Mapping for Identifiers e 1036
1.4.8.1.2 Ruby Mapping for Modules e 1037
1.4.8.1.3 Ruby Mapping for Built-In Types e 1038
1.4.8.1.4 Ruby Mapping for Enumerations i 1039
1.4.8.1.5 Ruby Mapping for StrUCIUreS e 1042

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.4.8.1.6 Ruby Mapping for SEQUENCESot e 1044
1.4.8.1.7 Ruby Mapping for Dictionaries e 1046
1.4.8.1.8 Ruby Mapping for CONStantst e e 1047
1.4.8.1.9 Ruby Mapping for EXCEptioNS e 1049
1.4.8.1.10 Ruby Mapping for Interfaces e 1053
1.4.8.1.11 Ruby Mapping for Operationsttt e e 1060
1.4.8.1.12 Ruby Mapping for Classest e 1067
1.4.8.1.13 Code Generation iN RUDY e 1076
1.4.8.1.14 The main Program in RUDY o e e 1082
1.4.8.1.15 Using Slice Checksums in RUby 1088
1.4.8.1.16 Example of a File System Clientin Ruby e 1089

1.5 Properties and Configurationt e 1094
1.5.1 PropertiesS OVEIVIEW oottt ettt e e e e e e e e e e e e 1095
1.5.2 Configuration File SYNtax e 1097
1.5.3 Setting Properties onthe Command Line 1100
1.5.4 Using Configuration Files 1101
1.5.5 Alternate Property StOreSttt e e 1103
1.5.6 Command-Line Parsing and Initialization 1104
1.5.7 The Properties Interface e 1107
1.5.8 Reading Properties 1109
1.5.9 Setting Propertieso 1111
1.5.10 Parsing Propertiesottt e e e e 1116
1.6 Communicator and other Core Local Features e 1121
1.6.1 COMMUNICALOIS . . . ottt ettt et et et et e e e et e e e e et et e e e e e 1122
1.6.2 Communicator Initialization 1126
1.6.3 ObJeCt IdENtitYot e 1128
1.6.4 Plug-in FaCilityo e 1132
1.6.4. L PlIUG-IN APl 1133
1.6.4.2 Plug-in Configuration 1137
1.6.4.3 Advanced PlUug-in TOPICSottt et e e e e e e 1138

1.7 Client-Side FeatUreS e e 1141
L7 L PrOXIES o ittt e 1142
1.7.1.1 Obtaining PrOXiESttt e e e 1143
1.7.2.2 Proxy MethOaso 1146
1.7.1.3 Proxy EndpOintSo 1151
1.7.1.4 Filtering Proxy ENdpointso 1152
1.7.1.5 Proxy Defaults and OVerrideso 1153
1.7.1.6 Proxy-Based Load BalanCing 1155
1.7.1.7 Indirect Proxy with Object Adapter Identifier e 1157
1.7.2.8 Well-KNOWN PrOXYottt e e et e e e e e e e e e e e e e 1158
1.7.1.9 Proxy and Endpoint SYNtaXottt 1159
1.7.2 ReqUESE CONEXES . . o .ottt sttt e e et e e e e e e e e 1166
1.7.2.1 EXplicit Request CONEXESottt ettt e e e e e e 1167
1.7.2.2 Per-Proxy Request CONEXESttt it e e e e e e e e 1169
1.7.2.3 Implicit ReqUESE CONEXIS . . . o ottt ettt e e e e e e e e e e 1171
1.7.2.4 Design Considerations for Request CONteXISottt 1173
1.7.3Invocation TIMEOULS i ettt e e e e 1175
1.7.4 AutomatiC Retries 1177
1.7.50Nneway INVOCALIONSottt e e e e e 1181
1.7.6 Datagram INVOCALIONSottt et e e e e e e e e 1185
1.7.7 Batched INVOCALIONS 1188
1.8 Server-Side FeatUres 1194
1.8.1 ODBJECt AQAPIEIS . . oottt e 1195
1.8.1.1 The ACtiVe Servant Mapttt e e e e e e 1196
1.8.1.2 Creating an Object Adaplerttt e e e 1198
1.8.1.3 Servant Activation and Deactivation 1199
1.8.1.4 Object Adapter STateSottt e 1201
1.8.1.5 Object Adapter EnNdpoints o 1204
1.8.1.6 Creating Proxies with an Object Adapter it e 1208
1.8.1.7 Using Multiple Object Adapterst e 1210
1.8.2The CUITENt ODJECEo e e e e e e e e e e e 1211
1.8.3Servant LOCAIOrSttt 1213
1.8.3.1 The ServantLocator Interfacet e 1214
1.8.3.2 Threading Guarantees for Servant LOCators ittt 1216
1.8.3.3 Registering a Servant LOCAtOrt 1217
1.8.3.4 Servant Locator Example 1219
1.8.3.5 Using Identity Categories with Servant LOCatorsttt 1223
1.8.3.6 Using Cookies with Servant LOCatOrst e 1227
1.8.4 Default SErvants 1229
1.8.5 DisSpatCh INterCePlOrSot e e 1233
1.9 ClIeNt-Server FEAtUIESttt et e 1238
1.9.1 The lce Threading MOdel o e e e e 1239

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.9.1. 1 Thread POOIS 1240
1.9.1.2 Object Adapter Thread POOIS i 1243
1.9.1.3 Thread Pool Design Considerationsttt e 1244
1.9.1.4 Concurrent Proxy INVOCALIONSttt e e e e e e 1246
1.9.1.5 Nested INVOCALIONSot 1247
1.9.1.6 Thread Safetyt 1249
1.9.1.7 Dispatching Invocations to User Threadst e 1255
1.9.1.8 Blocking API Callso 1271
1.9.2 ConNection Managementttt et e e e e 1272
1.9.2.1 Connection Establishment 1273
1.9.2.2 Active Connection Managementttt 1277
1.9.2.3USING CONNECLIONS . . ot ettt e 1281
1.9.2.4 Connection CIOSUIEot e 1289
1.9.2.5 Bidirectional CONNECLIONS i e 1290
1.9.3 Connection TIMEOULSottt et e e et ettt 1294
1.9.4 Collocated Invocation and DispatCh 1297
1.9, 5 LOCAIONS ..ottt e 1299
1.9.5.1 Locator Semantics for Clients i 1300
1.9.5.2 Locator Configuration for a Client 1303
1.9.5.3 Locator Semantics for SEIVEIrS 1304
1.9.5.4 Locator Configuration for a SEIVEr 1305
1.9.6 Slicing Values and EXCepLiONSot 1307
1.0.7 DYNamMIC ICE . .o 1319
1.9.7.1 Streaming INterfaces 1320
1.9.7.1.1 C++ Streaming INterfaces 1321
1.9.7.1.2 Java Streaming INterfaces e 1341
1.9.7.1.3 C-Sharp Streaming Interfaces e 1360

1.9.7.2 Dynamic Invocation and DispatCh 1379
1.9.7.2.1 Dynamic Invocation and Dispatch OVErVIEWttt 1380
1.9.7.2.2 Dynamic Invocation and Dispatch in C++ e 1383
1.9.7.2.3 Dynamic Invocation and Dispatch in Java e 1389
1.9.7.2.4 Dynamic Invocation and Dispatch in C-Sharp i 1395

1.9.7.3 Asynchronous Dynamic Invocation and Dispatch i 1402
1.9.7.3.1 Asynchronous Dynamic Invocation and Dispatch in C++ 1403
1.9.7.3.2 Asynchronous Dynamic Invocation and DispatchinJava 1409
1.9.7.3.3 Asynchronous Dynamic Invocation and Dispatch in C-Sharp 1413

L0 B FaCEtS ..ot 1416
.99 VeISIONING . o vttt et et e e e e e e e 1424
1.9.9.1 Versioning through Incremental Updates e 1425
1.9.9.2 Versioning With FacCets 1428
1.10 Administration and DiagnoStiCsSt 1433
1.10.1 Administrative Facility 1434
1.10.1.1 The @admin ODJECEot e e e e e 1435
1.10.1.2 Creating the admin ObJECto e 1436
1.10.1.3 Using the admin ODJECT i 1437
1.10.1.4 The Process FacCetttt e 1439
1.10.1.5 The Properties FacCett e e 1443
1.10.1.6 The Logger FaCett e e e e e e 1448
1.10.1.7 The Metrics FacCet e e 1452
1.10.1.8 Filtering Administrative Facets e 1457
1.10.1.9 Custom Administrative Facets 1458
1.10.1.10 Security Considerations for Administrative Facets 1459
1.10.2 Logger FacCility e 1460
1.10.2.1 The Default LOggert e e e e e e e 1461
1.10.2.2 CUSIOM LOGUEIS . . v o ettt et e e e e e e e e e e e e e e e 1462
1.10.2.3 BUI-IN LOGUEIS . . . oottt e e e e e e e e 1463
1.10.2.4 Logger PlUG-INSot 1465
1.10.2.5 The Per-ProCess LOQOErottt e e e e e 1471
1.10.2.6 C++ Logger Utility ClasSesttt e e 1472
1.10.3 Instrumentation FacCility 1474
L L CEBOX .ot 1479
1.11.1 Developing ICEBOX SEIVICESottt e e e e e e e e e 1480
1.11.2 Configuring ICEBOX SEIVICESottt et et e e e e e e e 1485
1.11.3 Starting the ICEBOX SeIVEr o 1490
1.11.4 IceBox ADMINISIrationt 1493
L1210 PlIUGINS . oot e e 1497
L1.12. 1 ICEDISCOVEIY . o it ettt ettt e e e e e e 1498
1.12.2 ICeLOCAtOrDISCOVEIY . . o . .t ittt et e e e e e e e e e e e e e e 1503
00 7 B o= 1S 1 1506
1.12.3. L USING ICESSL .ottt 1508
1.12.3.2 Configuring [CESSL 1511
1.12.3.3 Programming [CeSSLo 1523

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.12.3.3.1 Programming IceSSL iN CPP e 1524
1.12.3.3.2 Programming ICESSL iN JAVAttt e 1531
1.12.3.3.3 Programming 1ceSSL in .NET e 1537
1.12.3.4 Advanced ICESSL TOPICS . . . ittt ettt e e e e e e e 1543
1.12.3.5 Setting up a Certificate AULNOIItY 1551
1.12.4 Using Plugins with Static Libraries 1552
LLAB ICE SBIVICES . .ottt 1553
LABL L FrEEZE . .ottt 1554
11311 Freeze EVICIOIS e e 1555
1.13.1.1.1 Freeze EVICIOr CONCEPLS . . . oottt et et e e e e e e e e 1556
1.13.1.1.2 Background Save EVICIOr e 1562
1.13.1.1.3 Transactional EVICIOr e 1566
1.13.1.1.4 Using a Freeze Evictor in the File System Server 1571
113 1.2 Fre@ZE MaPS . . i ittt it et e e e e e 1594
1.13.1.2.1 Freeze Map CONCEPLS . . . ottt e et e e e e e e e e e e e e e 1595
1.13.1.2.2 Using a Freeze Map in CH+ ..o e 1603
1.13.1.2.3 slice2freeze Command-Line OptioNs i e 1611
1.13.1.2.4 Using aFreeze Map in JaVattt e 1614
1.13.1.2.5 slice2freezej Command-Line OPtioNS ottt e e 1627
1.13.1.2.6 Using a Freeze Map in the File System Server i 1628
1.13. 1.3 Freeze Catalogs vv ittt e 1658
1.13.1.4 Backing Up Freeze Databasest 1660
103 2 IOz S Pl . o o ettt e 1661
1.13.2.1 Migrating a Freeze Database 1662
1.13.2.1.1 Automatic Database Migration 1663
1.13.2.1.2 Custom Database Migrationttt e 1667
1.13.2.1.3 FreezeScript Transformation XML Reference 1671
1.13.2.1.4 Using transformdb 1678
1.13.2.2 Inspecting @ Freeze Databaset 1684
1.13.2.2.1 Using dumpdb . ..o e 1685
1.13.2.2.2 FreezeScript Inspection XML Reference 1691
1.13.2.3 FreezeScript Descriptor EXpression Languagettt 1697
L1183 GlaCier2 .. 1700
1.13.3.1 Common Firewall Traversal ISSUES i e 1701
1.13.3.2 About GIaCIEr2 1702
1.13.3.3 How Glacier2 WOorks 1703
1.13.3.4 Getting Started with Glacier2 1704
1.13.3.5 Callbacks through Glacier2 e 1711
1.13.3.6 Glacier2 Helper Classesottt e e e e e e e 1714
1.13.3.7 Securing @ Glacier2 ROULETottt e e e e e e 1722
1.13.3.8 Glacier2 Session Managementttt e 1730
1.13.3.9 Dynamic Request Filtering with Glacier2 e 1734
1.13.3.10 Glacier2 Request BUfferingo 1736
1.13.3.11 How Glacier2 uses Request CONtEXISottt e e i 1737
1.13.3.12 Configuring Glacier2 behind an External Firewall 1739
1.13.3.13 Advanced Glacier2 Client Configurationst e 1740
1.13.3.14 IceGrid and Glacier2 Integrationt 1742
1.13.3.15 Glacier2 MetriCSot 1744
L1284 1CeGHIT .o 1746
1.13.4.1 IceGrid ArChiteCtUre 1748
1.13.4.2 Getting Started With ICEGITo 1750
1.13.4.3 Using IceGrid Deployment 1755
1.13.4.4 Well-Known ODBJeCtSo e e e 1763
1.13.4.51ceGrid TeMPIAteSot 1771
1.13.4.6 IceBox Integration with ICEGrid 1777
1.13.4.7 Object Adapter Replication 1782
1.13.4.8 L0ad BalanCingot 1786
1.13.4.9 Resource Allocation using IceGrid SESSIONSttt 1798
1.13.4.10 Registry RepliCation 1807
1.13.4.11 Application Distribution o 1812
1.13.4.12 IceGrid Administrative SESSIONS ottt 1819
1.13.4.13 Glacier2 Integration wWith ICeGId 1826
1.13.4.14 IceGrid XML Reference 1830
1.13.4.14.1 Adapter Descriptor Element e 1831
1.13.4.14.2 Allocatable Descriptor Element e 1833
1.13.4.14.3 Application Descriptor Element e 1834
1.13.4.14.4 DbEnv Descriptor Element e 1835
1.13.4.14.5 DbProperty Descriptor Element e 1836
1.13.4.14.6 Description Descriptor Element e 1837
1.13.4.14.7 Directory Descriptor Element e 1838
1.13.4.14.8 Distrib Descriptor Element e 1839
1.13.4.14.9 IceBox Descriptor Element 1840

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.13.4.14.10 IceGrid Descriptor Element e 1841
1.13.4.14.11 Load-Balancing Descriptor Element e 1842
1.13.4.14.12 Log Descriptor Element e 1843
1.13.4.14.13 Node Descriptor Element e 1844
1.13.4.14.14 Object Descriptor Element e 1845
1.13.4.14.15 Parameter Descriptor Element 1846
1.13.4.14.16 Properties Descriptor Element e 1847
1.13.4.14.17 Property Descriptor Element e 1848
1.13.4.14.18 Replica-Group Descriptor Element e 1849
1.13.4.14.19 Server Descriptor Element 1850
1.13.4.14.20 Server-Instance Descriptor Element 1852
1.13.4.14.21 Server-Template Descriptor Element 1853
1.13.4.14.22 Service Descriptor Element e 1854
1.13.4.14.23 Service-Instance Descriptor Element 1855
1.13.4.14.24 Service-Template Descriptor Element i 1856
1.13.4.14.25 Variable Descriptor Element e 1857
1.13.4.14.26 Using Command Line Options in DESCHPLOrSttt e 1858
1.13.4.14.27 Setting Environment Variables in DesCriptors it 1859
1.13.4.15 Using Descriptor Variables and Parameters 1861
1.13.4.16 IceGrid Property Set SEMANtICS oottt 1867
1.13.4.17 IceGrid XML FEAtUreS e 1872
1.13.4.18 IceGrid Server Reference i 1875
1.13.4.18.1 iCegridregistryo e 1876
1.13.4.18.21CegridnOdeo 1878
1.13.4.18.3 Well-Known Registry ODJeCtSo 1880
1.13.4.18.4 IceGrid Persistent Datattt 1882
1.13.4.18.5 Promoting a Registry Slave e 1884
1.13.4.19 IceGrid and the Administrative Facility 1885
1.13.4.20 Securing ICEGIITot e 1893
1.13.4.21 icegridadmin Command Line Tool 1898
1.13.4.22 IceGrid Admin Graphical TOOl 1904
1.13.4.22.1 Getting Started with lceGrid Admin e 1905
1.13.4.22.2 Live Deployment Tab e 1908
1.13.4.22.3 Application Tabs e 1943
1.13.4.23 IceGrid Server ACtiVatION 1966
1.13.4.24 IceGrid Troubleshootingot 1969
1.13.4.25 IceGrid Database ULility 1972
1185 ICePatCNZ . . 1973
1.13.5.1 Using iCepatCh2CalC i 1974
1.13.5.2 Running the ICePatCh2 Server e 1977
1.13.5.3 Running the IcePatch2 Client e e 1978
1.13.5.4 IcePatch2 Object IdentitieSt 1980
1.13.5.5 IcePatch2 Client Utility Library 1981
L1AB.6 ICESIONM 1985
1.13.6.1 1CeSIOrM CONCEPLS . o . o oottt et e e e e e e e e e e 1987
1.13.6.2 IceStorm INterfaces i 1989
1.13.6.3 USING ICESIOMM . . .o 1992
1.13.6.3.1 Implementing an IceStorm Publisher 1993
1.13.6.3.2 Using an IceStorm Publisher Object e 1998
1.13.6.3.3 Implementing an lceStorm Subscriber 2000
1.13.6.3.4 Publishing to a Specific Subscriber 2007
1.13.6.4 Highly Available ICeStOrm 2009
1.13.6.5 lceStorm AdMINIStration 2013
1.13.6.6 TOPIC Federationt e e 2015
1.13.6.7 IceStorm Quality Of SErVICEo 2019
1.13.6.8 IceStorm Delivery MOOES it 2021
1.13.6.9 Configuring [CeSIOMMo 2023
1.13.6.10 1CeSIOrM MELICSot e 2028
1.13.6.11 IceStorm Database ULility 2030
1.14 The Ice ProtoCol 2031
1.14.1 Data ENCOUING . . oottt e e 2032
1.14.1.1 Basic Data ENCOAINGot 2033
1.14.1.2 Data Encoding for EXCEPLIONSt 2038
1.14.1.3 Data Encoding for ClasSSesttt 2043
1.14.1.3.1 Data Encoding for Class Type IDS it e 2047
1.14.1.3.2 Simple Example of Class ENCOdiNgot e 2049
1.14.1.3.3 Data Encoding for Class Graphs e 2055
1.14.1.4 Data Encoding for Interfaces 2064
1.14.1.5 Data Encoding for ProXi€St 2066
1.14.1.6 Data Encoding for Optional Values e 2072
1.14.2 ProtOCOl MESSAGES . . . o ot ittt it et e e e e e e 2077
1.14.3 Protocol COMPIESSIONo ittt et et e e e e e et e e e e e e e 2084

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

1.14.4 Protocol and ENcOding VEISIONSottt e e e e e e 2085
1,15 BeSt PraCtiCes oo 2087
1.15.1 Optional ValUESo 2088
1.15.2 Server Implementation TEChNIQUES oot e 2095
1.15.3 Servant EVICIOIS 2101
1.15.3.1 Implementing a Servant EViCtor in C++ 2103
1.15.3.2 Implementing a Servant EVICIOr iNn Javat 2112
1.15.3.3 Implementing a Servant Evictor in C-Sharp 2120
1.15.4 Object Life CyCleo 2130
1.15.4.1 Understanding Object Life CyCle 2131
1.15.4.2 Object Existence and NON-EXIStENCE i e 2132
1.15.4.3 Life Cycle of Proxies, Servants, and Ice Objects i 2135
1.15.4.4 ODJeCt Creationttt it et e e e e e e e 2137
1.15.4.5 ObJeCt DESIIUCHIONottt et et e e e e e e e e 2141
1.15.4.5.1 Idempotency and Life Cycle Operationst 2143
1.15.4.5.2 Implementing a destroy Operationttt e 2144
1.15.4.5.3 Cleaning Up a Destroyed Servantottt 2146
1.15.4.5.4 Life Cycle and Collection Operationsttt e 2148
1.15.4.5.5 Life Cycle and Normal Operationsttt e 2153
1.15.4.6 Removing Cyclic DEPENdENCIESttt e 2158
1.15.4.6.1 Acquiring Locks without Deadlocks e 2160
1.15.4.6.2 Reaping ObJeCtSttt 2161
1.15.4.7 Object Identity and UNIiQUENESSottt e e e 2166
1.15.4.8 Object Life Cycle for the File System Application 2168
1.15.4.8.1 Implementing Object Life Cycle in C++ e 2170
1.15.4.8.2 Implementing Object Life Cycle in Javat 2180
1.15.4.9 Avoiding Server-Side Garbageot 2191
1.16 Platform-Specific FEAtUrES e 2198
1.16.1 WINAOWS SEIVICES . . .ottt ittt ettt et e e e et e e e e e e 2199
1.16.1.1 Installing @ WIiNdOWS SEIVICEttt e e e 2200
1.16.1.2 Using the Ice Service Installer 2201
1.16.1.3 Manually Installing a Service as a Windows ServiCeouiiiienieeinennen.. 2205
1.16.1.4 Troubleshooting WINdOWS SEIVICESottt e e 2211
1.16.2 WIndows Store AppPlICALIONSot e 2213
1.17 Property ReferenCeo e 2215
1.17.1 Object Adapter Propertieso 2216
1.07.2 ProXY PrOPeItiES . .ot e e e 2221
1.17.3 Miscellaneous ICe.* Propertiest 2224
O =T = 2233
1075 GlaCier 2. 2240
L 17 B 10 AL, e 2250
L A7, 7 ICe AdMIN. Y 2254
1178 1Ce.C0NMIg . ..t 2257
1.A7.9 Ice Default.® .. 2258
1.17.20 1ce.nitPIUGINS . . oo 2262
L 17 0L ICe PV o 2263
L1702 1CEIPVE . . oo 2264
107,23 1Ce. OVeITIOE.* 2265
1.7, 04 1Ce . PIUGIN® e 2267
1.17.15 1ce.PluginLoadOrdert e 2271
1.17.16 Ice.PreferlPVBAdAresS 2272
L1707 1C. T C P o 2273
1.17.18 Ice.ThreadPool.x 2274
1.17.19 1. ThreadPriOrity ottt ettt e e e e e e e e e 2277
107,20 ICE. TIACE.Y . e 2278
117, 20 1B UD P 2281
107,22 e VAN, 2282
107 28 CEBOX. Y L 2284
1.17.24 1ceBOXAAMIN . . .o 2288
1.7, 25 1B DI SOV Y. e e e 2289
117,26 ICEGIA.* oo 2292
107,27 1ceGridAdmMIN.Y 2307
1.017.28 1CELOCAIOIDISCOVEIY. X . . .ottt et e e e e 2311
1.17.29 ICEMX.METIICS . . o 2314
1.07.30 IcePatCh2.* 2316
1.17.31 IcePatch2Client.r 2317
117, 32 0B S . o 2319
1.17.33 1CESIOIM PrOPeItiESottt e e e e 2336
1.17.34 1ceStOrmMAdMIN.F L . L 2342
2.0 ReleasSE NOIES 2344
2.1 Supported Platforms for Ice and Ice TOUCh 3.6.4 e 2345
2.2New Featuresin ICe 3.6 2348

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

2.3 Backward Compatibility Of ICE VEISIONSo e 2358
2.4 Upgrading your Application from Ice 3.6.0 Or later e 2360
2.5 Upgrading your Application from ICe 3.5 e 2363
2.6 Upgrading your Application from ICe 3.4 o e 2378
2.7 Upgrading your Application from ICe 3.3 e 2385
2.8 Upgrading your Application from Ice 3.2 or Earlier Releases 2403
2.9 Platform NOtes for IC& 3.6o 2410
2.10 Using the Windows Binary Distribution e 2412
2.11 Using the Linux Binary DistribUutionSo e 2420
2.12 Using the macOS Binary DistribUtiono e 2432
2.13 Building Ice ApplicatioNS iN JAVA oot e 2435
2.14 Using Ice 0N ANAroido e 2438
2.15UsSING 1€ WIth YOCIOot e e 2440
2.16 Using the JavaScript Distribution e 2442
2.17 Using the Python DistribUtiono e e 2445
2.18 Using the Ruby DisStribULION e e e 2447
2.19 Getting Started With 1C€ 0N AW So e 2449
3.lce Touch Release NOES e 2451
3.1 Supported Platforms for Ice TOUCh 3.6.4 2452
3.2 New Features in Ice TOUCh 3.6.4 2453
3.3 1ce Touch Feature Set 2454
3.4 Upgrading your Ice Touch AppliCation i e 2456
3.5 Using the Ice Touch Binary Distribution 2457
4. Slice API RefereNCE e 2459
4 L Freeze SliCe APl .. . 2460
4.1.1 Freeze-BackgroundSaveEViCtor e 2461
4.1.2 Freeze-CatalogDatat 2463

4. 1.3 Freeze-ConnectiOnt 2464
4.1.4 Freeze-DatabaseEXCeptioN e 2466
4.1.5 Freeze-DeadloCKEXCEPLIONot e e e e 2467
4.1.6 Freeze-EVICIOr 2468
4.1.7 Freeze-EvictorDeactivatedEXCePLiONt e 2472
4.1.8 Freeze-EVICIOrIterator 2473
4.1.9 Freeze-IndexNOtFOUNEXCEPLIONo e 2474
4.1.10 Freeze-InvalidPoSItIONEXCEPLIONottt e e e e 2475
4.1.11 Freeze-NOSUChEIEMENtEXCEPLIONo e e 2476
4.1.12 Freeze-NOtFOUNAEXCEPLION oottt et e e e e et e e e e e 2477
4.1.13 Freeze-ObJeCtRECOITot e 2478
4.1.14 Freeze-ServantInitializer 2479
4.1.15 Freeze-StatiStiCSt 2480
4.1.16 Freeze-TranSactiOnttt 2481
4.1.17 Freeze-TransactionalEVICIOr 2482
4.1.18 Freeze-TransactionAlreadylnProgreSSEXCeptiont 2483

4.2 Glacier2 Slice APl . .. 2484
4.2.1 Glacier2-CannotCreateSeSSIONEXCEPIONttt et e 2485
4.2.2 Glacier2-1dentitySet 2486
4.2.3 Glacier2-PermissionDeniedEXCePLioN 2487
4.2.4 Glacier2-PermissionsVerifier 2488
4.2.5 GlaCier2-ROULET 2489
4.2.6 GlaCIEr2-SESSIONttt 2491
4.2.7 Glacier2-SessionControl 2492
4.2.8 Glacier2-SessioNMaNagErt ittt e e 2494
4.2.9 Glacier2-SessionNOtEXISTEXCEPLION i 2495
4.2.10 Glacier2-SSLINTO 2496
4.2.11 Glacier2-SSLPermissionsVerifier 2497
4.2.12 Glacier2-SSLSESSIONMANAGETt vttt e e e et e e e e 2498
4.2.13 GlaCier2-StriNgSet oot 2499

4.3 1CEBOX SIiCE APl .. 2500
4.3.1 IceBox-AlreadyStartedEXCEptioN 2501
4.3.2 IceBox-AlreadyStoppedEXCeption o e 2502
4.3.3 1CeBOX-FaIlUr€EXCEPLIONot 2503
4.3.4 1ceBoX-NOSUChSEIVICEEXCEPLION 2504
4.3.5 1CEBOX-SBIVICE 2505
4.3.6 [CEBOX-SEIVICEMANAGETottt e e e 2506
4.3.7 1CeBOX-ServiCEODSEIVEr 2508

4.4 1ceGrid Slice APl . . . 2509
4.4.1 IceGrid-AccessDeniedEXCEPLIONttt 2516
4.4.2 IceGrid-AdapterDesCriptort 2517
4.4.3 IceGrid-AdapterDynamicInfo e 2519
4.4.4 IceGrid-AdapterinfO e 2520
4.4.5 IceGrid-AdapterNOtEXIStEXCEPON e 2521
4.4.6 1ceGrid-AdapterODSeIVer e 2522

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

4.4.7 IceGrid-AdaptiveLoadBalancingPoliCy e 2523
4.4.8 1ceGrid-AdmMin 2524
4.4.9 1ceGrid-AdmMINSESSIONttt 2537
4.4.10 lceGrid-AllocatioNEXCEPLION oot 2542
4.4.11 IceGrid-AllocationTIMEOULEXCEPLIONt e e 2543
4.4.12 1ceGrid-ApplicationDeSCIIPOr oot 2544
4.4.13 IceGrid-ApplicationInfo e 2546
4.4.14 IceGrid-ApplicationNOtEXISTEXCEPLON 2548
4.4.15 lceGrid-ApplicationODSEIVEr 2549
4.4.16 IceGrid-ApplicationUpdateDescCriptorot 2551
4.4.17 IceGrid-ApplicationUpdatelnfo e 2553
4.4.18 IceGrid-BadSignalEXCePLiono 2554
4.4.19 IceGrid-BoxedDistributionDesCriptor e 2555
4.4.20 1ceGrid-BoXeASHING . . . oot 2556
4.4.21 1ceGrid-CommuniCatorDESCIIPIOr ottt e e e e 2557
4.4.22 1ceGrid-DDENVDESCHIPIOr . . . ot e 2558
4.4.23 1ceGrid-DeploymentEXCePLiON oottt 2559
4.4.24 1ceGrid-DistributionDesCriptor 2560
4.4.25 |ceGrid-Filelterator 2561
4.4.26 IceGrid-FileNotAvailableEXCeption 2562
4.4.27 IceGrid-FileParser 2563
4.4.28 1ceGrid-1CEBOXDESCIIPIOr . . .ottt 2564
4.4.29 IceGrid-LoadBalancingPoliCy e 2565
4.4.30 lceGrid-LoadInfo 2566
4.4.31 IceGrid-LoadSample e 2567
4.4.321CeGrid-LOCator 2568
4.4.33 1ceGrid-NOGEDESCIIPIOr . . . oottt e e 2569
4.4.34 IceGrid-NodeDynamiCINfo 2570
4.4.35 1ceGrid-Nodelnfo 2571
4.4.36 1ceGrid-NodeNOtEXISIEXCEPLONot e e e e 2573
4.4.37 1ceGrid-NOdeODSEIVEr e 2574
4.4.38 IceGrid-NodeUnreachableEXCeption e 2576
4.4.39 IceGrid-NodeUpdateDesCriplorttt e 2577
4.4.40 1ceGrid-ObjeCtDeSCriPIOr . . . ottt e 2579
4.4.41 1ceGrid-ObjeCtEXISISEXCEPLIONo ottt e e e 2580
4.4.42 1ceGrid-ObJectinfO 2581
4.4.43 IceGrid-ObjectNotRegisteredEXCEptiont e 2582
4.4.44 1ceGrid-ObjeCtOnSEIVero 2583
4.4.45 IceGrid-ObserverAlreadyRegisteredEXCeption 2584
4.4.46 IceGrid-OrderedLoadBalancingPoliCy 2585
4.4.47 1ceGrid-ParseEXCePliONot e 2586
4.4.48 IceGrid-PatChEXCEPtioNo e 2587
4.4.49 IceGrid-PermissionDeniedEXCEPtioNo e 2588
4.4.50 1ceGrid-PropertyDesCriPlOrottt e e e 2589
4.4.51 1ceGrid-PropertySetDesCrIPIOro ottt e e e e 2590
4.4.52 1CEGHU-QUEIY . . oottt 2591
4.4.53 IceGrid-RandomLoadBalancingPoliCy 2593
4.4.54 1CeGHU-REGISIIY . ..o 2594
4.4.55 1ceGrid-RegistryInfo e 2597
4.4.56 lceGrid-RegistryNOtEXISTEXCEPLONo e 2598
4.4.57 1ceGrid-RegistryODServer 2599
4.4.58 IceGrid-RegistryPluginFacade 2600
4.4.59 IceGrid-RegistryUnreachableEXCeption e 2604
4.4.60 lceGrid-ReplicaGroupDesCriPIOr oottt e e e e e e 2605
4.4.61 IceGrid-ReplicaGroUpFilter e 2606
4.4.62 IceGrid-RoundRobinLoadBalancingPoliCy 2607
4.4.63 1eGrid-ServerDesCriPIOrt e 2608
4.4.64 IceGrid-ServerDynamicCInfo e 2610
4.4.65 1ceGrid-Serverinfo 2611
4.4.66 lceGrid-ServerInstanCeDeSCHPIOrttt e e 2612
4.4.67 lceGrid-ServerNOotEXIStEXCEPLON 2613
4.4.68 IceGrid-ServerStartEXCEPLiONot 2614
4.4.69 1CeGrId-SEIVErSIatet 2615
4.4.70 lceGrid-ServerStopEXCEPLION e 2617
4.4.71 IceGrid-ServerUnreachableEXception 2618
4.4.72 1ceGrid-ServiceDeSCIIPIOro e 2619
4.4.73 IceGrid-ServicelnstanCeDeSCHPIOrttt 2620
4474 1CeGHIA-SESSION . ..ot 2621
4.4.75 IceGrid-TemplateDesCriplorottt e 2623
4.4.76 1ceGrid-TypeRilter . . . e 2624
4.4.77 1ceGrid-USerACCOUNIMAaPPEr . . .o ottt e e e e e e e e 2625
4.4.78 IceGrid-UserAccountNOtFOUNAEXCEPLIONo e e 2626

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

4.5 [ceLocatorDiSCoVery SIiCe APl 2627
4.5.1 IceLocatorDiSCoVery-LOOKUDt e 2628
4.5.2 IceLocatorDiscovery-LOOKUPREPIY o e 2629

4.6 1CeMX SliCE APl . 2630
4.6.1 IceMX-ChildInvocationMEetriCS 2632
4.6.2 IceMX-CollocatedMEtriCSo 2633
4.6.3 1ceMX-ConnectioNMEetrCSt 2634
4.6.4 ICeMX-DiSpatChMetriCSo 2635
4.6.5 1ceMX-INVOCAtIONMETNICSt e 2636
4.6.6 ICEMX-METIICSo 2637
4.6.7 1ceMX-MetriCSAAMINo 2638
4.6.8 IceMX-MetricsFailures 2640
4.6.9 IceMX-ReMOtEMELIICS 2641
4.6.10 1IceMX-SeSSIONMELIICS ot 2642
4.6.11 IceMX-SubscCriberMetriCS 2643
4.6.12 IceMX-ThreadMetriCS e 2644
4.6.13 1CEMX-TOPICMEINICS . . . oottt e e e e e 2645
4.6.14 1ceMX-UnNKnoWNMEtriCSVIEWo e 2646

4.7 1cePatch? Slice APl . .. 2647
4.7.1 IcePatch2-FileACCESSEXCEPLION i e e 2649
4.7.21cePatch2-Filelnfo 2650
4.7.3 IcePatCh2-FileServer 2651
4.7.4 IcePatch2-FileSizeRangeEXCeption e 2654
4.7.5 lcePatch2-LargeFilelnfo 2655
4.7.6 IcePatch2-PartitionOutOfRaNgEEXCEPLIONottt 2656

4.8 1Ce SICE APl o 2657
A 8. L 1CE-ACM L 2664
4.8.21CE-ACMCIOSE . . .ttt 2665
4.8.31ce-ACMHeartbeat 2666
4.8.4 Ice-AdapterAlreadyACtiVEEXCEPLIONot e 2667
4.8.5 Ice-AdapterNOtFOUNAEXCEPLIONo ot et e e e 2668
4.8.6 Ice-AlreadyRegiSteredEXCEPLIONot e 2669
4.8.7 Ice-BadMagiCEXCEPLIONot e 2670
4.8.8 Ice-CloneNotimplementedEXCEPLIONot e 2671
4.8.9 Ice-CloseConneCtioNEXCEPLIONottt et e e e e e e e e e 2672
4.8.10 Ice-CloseTimEOUIEXCEPLIONo ottt ettt e e e e e e e e e e 2673
4.8.11 Ice-CollocationOptimizatioNEXCEPtion e 2674
4.8.12 1ce-COMMUNICALOT ottt et ettt e et et e e e e e e e e e 2675
4.8.13 Ice-CommunicatorDestroyedEXCEPtIONot 2684
4.8.14 1ce-CompressSiONEXCEPLIONottt e e e 2685
4.8.15 Ice-ConnectFailedEXCEPONt e 2686
4.8.16 1Ce-CONNECLIONottt e e e e e 2687
4.8.17 Ice-ConnectionCallback 2690
4.8.18 Ice-Connectioninfo 2691
4.8.19 Ice-ConnectioNLOSIEXCEPLIONttt e e 2692
4.8.20 Ice-ConnectionNotValidatedEXCEption e 2693
4.8.21 Ice-ConnectionRefUSEdEXCEPLION i 2694
4.8.22 Ice-ConnectionTIMEOULEXCEPLIONot e e et e 2695
4.8.23 Ice-ConnectTiIMEOUtEXCEPLION oot e e e e e 2696
4.8.24 1C-CUITBNE . .ot e e e e 2697
4.8.25 Ice-DatagramLimitEXCEPLioN e 2699
4.8.26 1CE-DNSEXCEPUON . . . ot 2700
4.8.27 Ice-ENcapsulationEXCEPLiONttt 2701
4.8.28 1C-ENCOAINGVEISION . . . o ottt e e e e e e e e e 2702
4.8.29 1CE-ENAPOINTo 2703
4.8.30 Ice-ENdpointinfo 2704
4.8.31 Ice-ENdpointParseEXCEPLIONttt 2706
4.8.32 Ice-ENdpointSelectionTYPEottt 2707
4.8.33 Ice-EndpointSelectionTypeParseEXCeption e 2708
4.8.34 Ice-FacetNOtEXIStEXCEPION 2709
4.8.35 Ice-FeatureNotSupportedEXCEPLIONo e 2710
4.8.36 ICe-FIleEXCEPtON . ..o 2711
4.8.37 1ce-FIXEAPIOXYEXCEPIION . . .ottt e e e e 2712
4.8.38 Ice-ForcedCloseConnectionEXCEPLiONo ot 2713
4.8.39 IC-IdENEIYo 2714
4.8.40 Ice-ldentityParSeEXCEPLIONt e 2716
4.8.41 Ice-lllegalldentityEXCEPLIONottt 2717
4.8.42 Ice-lllegalMessageSizeEXCEPtiONttt 2718
4.8.43 Ice-lllegalServantEXCePioNo e 2719
4.8.44 1ce-IMPIICItCONIEXE . . o oo 2720
4.8.45 Ice-InitializationEXCEPLioN e 2722
4.8.46 Ice-INStrumentation 2723

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

4.8.46.1 Ice-Instrumentation-ChildInvocationObserver

4.8.46.2 Ice-Instrumentation-CollocatedObserver

4.8.46.3 Ice-Instrumentation-CommunicatorObserver

4.8.46.4 Ice-Instrumentation-ConnectionObserver

4.8.46.5 Ice-Instrumentation-ConnectionState

4.8.46.6 Ice-Instrumentation-DispatchObserver

4.8.46.7 Ice-Instrumentation-InvocationObserver

4.8.46.8 Ice-Instrumentation-Observer

4.8.46.9 Ice-Instrumentation-ObserverUpdater

4.8.46.10 Ice-Instrumentation-RemoteObserver

4.8.46.11 Ice-Instrumentation-ThreadObserver

4.8.46.12 Ice-Instrumentation-ThreadState
4.8.47 Ice-InvalidReplicaGroupldException,
4.8.48 Ice-InvocationCanceledEXception i
4.8.49 Ice-InvocationTimeoutException i
4.8.50 Ice-IPConnectionInfo
4.8.51 Ice-IPEndpointinfo
4.8.52 1ce-Locator
4.8.53 Ice-LocatorFinder
4.8.54 Ice-LoCatOrRegISIIYo e
4.8.55 1CE-LOQOET . .ot
4.8.56 Ice-LoggerAdmin e
4.8.57 1CE-LOGMESSAQE . . . vttt
4.8.58 1Ce-LOgMESSAGETYPE . . v ittt e e
4.8.59 Ice-MarshalEXceptiont e
4.8.60 Ice-MemoryLimitException
4.8.61 Ice-NoENndpointEXception i
4.8.62 Ice-NoObjectFactoryEXception
4.8.63 Ice-NotRegisteredExXception
4.8.64 Ice-ObjectAdapter
4.8.65 Ice-ObjectAdapterDeactivatedException,
4.8.66 Ice-ObjectAdapterldinUseExceptiont
4.8.67 Ice-ObjectFactory
4.8.68 Ice-ObjectNotEXIStEXception
4.8.69 Ice-ObjectNotFoundException i
4.8.70 Ice-OpaqueEndpointinfo
4.8.71 Ice-OperationinterruptedException
4.8.72 Ice-OperationMode
4.8.73 Ice-OperationNOtEXIStEXCeptiont
4.8.741Ce-Plugin e
4.8.75 Ice-PlugininitializationException i
4.8.76 Ice-PluginManageru it e
4.8.771CE-ProCess i
4.8.78 1CE-Properties i e
4.8.79 Ice-PropertiesSAdmMIN e
4.8.80 Ice-ProtoCOIEXCEPLioN e
4.8.81 Ice-ProtocolVersion
4.8.82 Ice-ProxyParseEXceptiont
4.8.83 Ice-ProxyUnmarshalException
4.8.84 1ce-RemMOtELOgOErot
4.8.85 Ice-RemoteLoggerAlreadyAttachedException
4.8.86 Ice-RequestFailedEXception
4.8.87 Ice-ResponseSentEXCEPioNt
4.8.881CE-ROULEr
4.8.89 Ice-RouterFinder
4.8.90 Ice-SecurityEXCepLiont e
4.8.91 Ice-ServantLocator
4.8.92 Ice-ServerNotFOUNdEXCEPLiON i
4.8.93 Ice-SoCKetEXCeption e
4.8.94 Ice-StringConversionException
4.8.95 Ice-SyscallEXCEptiont e
4.8.96 Ice-TCPConnectionInfo i
4.8.97 Ice-TCPENdpointInfo e
4.8.98 Ice-TIMEOULEXCEPLiON e
4.8.99 Ice-TwowayOnlyEXception i
4.8.100 Ice-UDPConnectionInfo
4.8.101 Ice-UDPENdpointinfo
4.8.102 Ice-UnexpectedObjectEXCeptiont
4.8.103 Ice-UnknownEXCeptionot e
4.8.104 Ice-UnknownLocalEXception
4.8.105 Ice-UnknownMessageEXceptiont
4.8.106 Ice-UnknownReplyStatusException

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

4.8.107 Ice-UnknownRequeSHIAEXCEPLIONot e 2816
4.8.108 Ice-UnknownUSErEXCEPLIONottt e e e e e 2817
4.8.109 Ice-UnmarshalOutOfBOUNdSEXCEPLIONot e e e 2818
4.8.110 Ice-UnsupportedENCOdINGEXCEPLIONot t eee 2819
4.8.111 Ice-UnsupportedProtoCOIEXCEPLIONo e 2820
4.8.112 Ice-VersionMismatChEXCEPLIONot e 2821
4.8.113 Ice-VersionParseEXCEPLIONttt 2822
4.8.114 Ice-WSConnectionInfo 2823
4.8.115 Ice-WSENAPOINtINTO . . .o 2824
4.9 1CESSL SliCe APl . . o 2825
4.9.11ceSSL-ConnectionInfo 2826
4.9.2 1ceSSL-ENdpointinfo o 2827
4.9.3 1ceSSL-WSSConnectionInfo 2828
4.9.4 1ceSSL-WSSENpPOINtINTOo e 2829
4.10 1ceStOrm SIiCe APl . .o 2830
4.10.1 IceStorm-AlreadySubscribed e 2832
4.10.2 1ceStorm-BadQoS e 2833
4.10.3 1ceStorm-FiNder 2834
4.10.4 lceStorm-InvalidSubscriber 2835
4.10.5 lceStorm-LINKEXISIS o 2836
4.10.6 lceStorm-LinkINfo o 2837
4.10.7 1ceStorm-NOSUCKLINKo 2838
4.10.8 1ceStorm-NOSUCNTOPICottt et e e e e e e e e e e e e e e 2839
4.10.9 1CESIOMM-TOPIC . o ottt et et e e e e e e e 2840
4.10.10 1CeSOrM-TOPICEXISISttt e e e e 2843
4.10.11 1ceStorm-TOPICMANAGET ot ittt et e e e e e e e e 2844

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Ilce Manual

Distributed Programming with Ice

The Internet Communications Engine (Ice) is a modern object-oriented toolkit that enables you to build distributed applications with minimal
effort. Ice allows you to focus your efforts on your application logic, and it takes care of all interactions with low-level network programming
interfaces. With Ice, there is no need to worry about details such as opening network connections, serializing and deserializing data for
network transmission, or retrying failed connection attempts.

The main design goals of Ice are:

Provide an object-oriented middleware platform suitable for use in heterogeneous environments.

Provide a full set of features that support development of realistic distributed applications for a wide variety of domains.
Avoid unnecessary complexity, making the platform easy to learn and to use.

Provide an implementation that is efficient in network bandwidth, memory use, and CPU overhead.

Provide an implementation that has built-in security, making it suitable for use over insecure public networks.

In simpler terms, the Ice design goals could be stated as "Let's build a powerful middleware platform that makes the developer's life easier."

The acronym "Ice" is pronounced as a single syllable, like the word for frozen water.

Getting Help with Ice

If you have a question and you cannot find an answer in this manual, you can visit our developer forums to see if another developer has
encountered the same issue. If you still need help, feel free to post your question on the forum, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, we
highly recommend purchasing commercial support.

Feedback about the Manual

We would very much like to hear from you in case you find any bugs (however minor) in this manual. We also would like to hear your opinion
on the contents, and any suggestions as to how it might be improved. You can contact us via e-mail at icebook@zeroc.com.

Legal Notices

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all caps.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

License

This manual is provided under one of two licenses, whichever you prefer:

® Creative Commons Attribution-No Derivative Works 3.0 Unported License.
This license does not permit you to make modifications.

® Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
This license permits you to make modifications, but for non-commercial use only. If you distribute this manual under this license, you

Copyright 2017, ZeroC, Inc.

https://f
https://zeroc.com/support
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

16

Ice 3.6.4 Documentation

must prominently include the following text:

This document is derived from ZeroC's Ice Manual, Copyright © ZeroC, Inc. 2003-2017.
You can find the latest version of this document at:
https://doc.zeroc.com/display/lce/lce+Manual

Copyright

Copyright © 2003-2017 by ZeroC, Inc.
mailto:info@zeroc.com
https://zeroc.com

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice/Ice+Manual
https://zeroc.com

17

Ice 3.6.4 Documentation

Ice Overview

The following topics provide a high-level overview of Ice:

® |ce Architecture introduces fundamental concepts and terminology, and outlines how Slice definitions, language mappings, and the
Ice run time and protocol work in concert to create clients and servers.

® |ce Services Overview briefly presents the object services provided by Ice.

® Architectural Benefits of Ice outlines the benefits that result from the Ice architecture.

Topics

® |ce Architecture
® |ce Services Overview
® Architectural Benefits of Ice

Copyright 2017, ZeroC, Inc.

18

Ice 3.6.4 Documentation

Ice Architecture

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice provides tools, APIs, and library support for building
object-oriented client-server applications. Ice applications are suitable for use in heterogeneous environments: client and server can be
written in different programming languages, can run on different operating systems and machine architectures, and can communicate using
a variety of networking technologies. The source code for these applications is portable regardless of the deployment environment.

Topics:

Terminology

Slice (Specification Language for Ice)
Overview of the Language Mappings
Client and Server Structure

Overview of the Ice Protocol

See Also

® |ce Services Overview
® Architectural Benefits of Ice

Copyright 2017, ZeroC, Inc.

19

Ice 3.6.4 Documentation

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is
minimal. Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware
technology in the past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few
terms used by Ice do differ from the corresponding terms used by other middleware.)

On this page:

Clients and Servers

Ice Objects

Proxies

Stringified Proxies

Direct Proxies

Indirect Proxies

Direct Versus Indirect Binding
Fixed Proxies

Routed Proxies

Replication

Replica Groups

Servants

At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations

Batched Datagram Invocations
Run-Time Exceptions

User Exceptions

Properties

Clients and Servers

The terms client and server are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts of
an application for the duration of a request:

® Clients are active entities. They issue requests for service to servers.
® Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure"” servers, in the sense that they never issue requests and only respond to requests. Instead, servers often
act as a server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently
client-server hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can
provide a callback object to the server that is used by the server to notify the client when the operation is complete. In that case, the client
acts as a client when it starts the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as peer-to-peer sy
stems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:

® An Ice object is an entity in the local or a remote address space that can respond to client requests.

® A single Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.

® Each Ice object has one or more interfaces. An interface is a collection of named operations that are supported by an object. Clients
issue requests by invoking operations.

® An operation has zero or more parameters as well as a return value. Parameters and return values have a specific type. Parameters
are named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized
by the server and passed to the client. (The return value is simply a special out-parameter.)

® An Ice object has a distinguished interface, known as its main interface. In addition, an Ice object can provide zero or more alternate
interfaces, known as facets. Clients can select among the facets of an object to choose the interface they want to work with.

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

® Each Ice object has a unique object identity. An object's identity is an identifying value that distinguishes the object from all other
objects. The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication
domain can have the same object identity.

In practice, you need not use object identities that are globally unique, such as UUIDs, only identities that do not clash with any
other identity within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which
we explore in our discussion of object life cycle.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the Ice object. A proxy is an artifact that is local to the client's
address space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the
client invokes an operation on the proxy, the Ice run time:

. Locates the Ice object

. Activates the Ice object's server if it is not running

. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

. Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

OO0 WNE

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:

® Addressing information that allows the client-side run time to contact the correct server
® An object identity that identifies which particular object in the server is the target of a request
® An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string:

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and
vice versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying
that information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's
identity, addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completely
specified by:

® a protocol identifier (such TCP/IP or UDP)
® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the
identity of the object is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapter
identifier. An object that is accessible using only its identity is called a well-known object, and the corresponding proxy is a well-known proxy.
For example, the string:

Si mpl ePrinter

Copyright 2017, ZeroC, Inc.

http://www.wikipedia.org/wiki/Uuid

Ice 3.6.4 Documentation

is a valid proxy for a well-known object with the identity Si npl ePri nt er.

An indirect proxy that includes an object adapter identifier has the stringified form

Si npl ePri nter @ri nt er Adapt er

Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a location service. In turn, the location service uses the object identity or the object adapter identifier as the key in a lookup
table that contains the address of the server and returns the current server address to the client. The client-side run time now knows how to
contact the server and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a
domain name, such as ww. zer oc. com to look up a web page, the host name is first resolved to an IP address behind the scenes and,
once the correct IP address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or
object adapter identifier to a protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location
service via configuration (just as web browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is known as binding. Not surprisingly, direct binding is used for
direct proxies, and indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing
proxies that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is
moved to a different machine. On the other hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxy
contains a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is
closed, the proxy no longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as
parameters on operation invocations. Fixed proxies are used to allow bidirectional communication, so a server can make callbacks to a client
without having to open a new connection.

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target.
Routed proxies are useful for implementing services such as Glacier2, which enables clients to communicate with servers that are behind a
firewall.

Replication

In Ice, replication involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually to
provide redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains
available on the others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and
obtain the same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize
with a database (or each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the
addresses at random for its initial connection attempt and tries all of them in the case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h serverl -p 10001:tcp -h server2 -p 10002

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

The proxy states that the object with identity Si npl ePr i nt er is available using TCP at two addresses, one on the host ser ver 1 and
another on the host ser ver 2. The burden falls to users or system administrators to ensure that the servers are actually running on these
computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as replica groups that
requires the use of a location service.

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one
replica group; such an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a
replica group identified as Pr i nt er Adapt er s can be used in a proxy as shown below:

Si mpl ePrinter @rinterAdapters

The replica group is treated by the location service as a "virtual object adapter.” The behavior of the location service when resolving an
indirect proxy containing a replica group id is an implementation detail. For example, the location service could decide to return the
addresses of all object adapters in the group, in which case the client's Ice run time would select one of the addresses at random using the
limited form of replication discussed earlier. Another possibility is for the location service to return only one address, which it decided upon
using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman
can add more intelligence to the binding process.

Servants

As we mentioned, an Ice Object is a conceptual entity that has a type, identity, and addressing information. However, client requests
ultimately must end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this
differently, a client request must ultimately end up executing code inside the server, with that code written in a specific programming
language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is known as a servant. A servant provides substance for (or incarnat
es) one or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that is
registered with the server-side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the
Ice object's interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object
incarnated by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it
can decide which object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two
different addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice
object. When a client invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other
words, multiple servants for a single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to
one server and, if that attempt fails, sends the request to the second server. An error is reported back to the client-side application code only
if that second attempt also fails.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver a request to the correct destination and, depending on
the exact circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request,
inform the client with an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is
known that a previous attempt definitely failed.

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a
violation of at-most-once semantics.

At-most-once semantics are important because they guarantee that operations that are not idempotent can be used safely. An idempotent

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

operation is an operation that, if executed twice, has the same effect as if executed once. For example, x = 1; is an idempotent operation:
if we execute the operation twice, the end result is the same as if we had executed it once. On the other hand, x++; is not idempotent: if we
execute the operation twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However,
realistic systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less
robust in the presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time
uses a more aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local
procedure call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are
available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): a client can invoke operations asynchronously, which means the client's calling
thread does not block while waiting for the invocation to complete. The client passes the normal parameters and, depending on the language
mapping, might also pass a callback that the client-side run time invokes upon completion, or the invocation might return a future that the
client can eventually use to obtain the results.

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has
invoked an operation on an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time
up-calls into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for
example, because it is waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation
completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead
of being forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing
S0, releases the execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the
results of the operation are available, the server-side application code makes an API call to inform the server-side Ice run time that a request
that was dispatched previously is now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For
example, the server may have an object with a get operation that returns data from an external, asynchronous data source and that blocks
clients until the data becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the
server. Clearly, this approach does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can
be blocked in the same operation invocation without tying up any threads in the server.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to
process a request synchronously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has "best effort" semantics. For a oneway invocation, the
client-side run time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport
has buffered the invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway
invocations, that is, traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the
operation may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so,
the client receives no notification that something has gone wrong.

Oneway invocations are possible only on operations that do not have a return value, do not have out-parameters, and do not throw user
exceptions.

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation
from a oneway invocation.

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This
can happen because each invocation may be dispatched in its own thread: even though the invocations are initiated in the order in which the
invocations arrive at the server, this does not mean that they will be processed in that order — the vagaries of thread scheduling can result in
a oneway invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable:
the client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level,
each message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched
oneway operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to
send, you make a separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in
a single message, and the server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into
the kernel for both client and server, and is much easier on the network between them because one large message can be transmitted more
efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the
batch. This guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as IceStorm, and for fine-grained interfaces that offer set o
perations for small attributes.

Datagram Invocations

Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer
UDP as a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user
exceptions. A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted
the message; the actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the
operation may be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no
notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

® [ndividual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation
may be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented
transport, individual invocations cannot be lost.)

® [ndividual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual
datagrams can take different paths through the network, it can happen that invocations arrive in an order that differs from the order
in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in
which low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be
used to multicast messages to multiple servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to accumulate a number of invocations in a buffer and then
send the entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated
system calls and allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for
batched messages whose total size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too
large, UDP fragmentation makes it more likely that one or more fragments are lost, which results in the loss of the entire batched message.
However, you are guaranteed that either all invocations in a batch will be delivered, or none will be delivered. It is impossible for individual
invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations

Copyright 2017, ZeroC, Inc.

25

Ice 3.6.4 Documentation

are made in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are pre-defined by the Ice run time and cover common error
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the
application as native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception
handling.

User Exceptions

A server indicates application-specific error conditions by raising user exceptions to clients. User exceptions can carry an arbitrary amount of
complex data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by
catching an exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name-value pairs, such as | ce. Def aul t. Pr ot ocol =t cp.
Properties are typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level
of tracing, and various other configuration parameters.

See Also

The Slice Language
Proxies for Ice Objects
Locators

Object Life Cycle
Bidirectional Connections
Glacier2

IceStorm

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice (Specification Language for Ice)

Each Ice object has an interface with a number of operations. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define the client-server contract in a way that is independent of a
specific programming language, such as C++, Java, or C#. The Slice definitions are compiled by a compiler into an API for a specific
programming language, that is, the part of the API that is specific to the interfaces and types you have defined consists of generated code.

See Also

® The Slice Language

26 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Terminology#Terminology-IceObjects

27

Ice 3.6.4 Documentation

Overview of the Language Mappings

The rules that govern how each Slice construct is translated into a specific programming language are known as language mappings. For
example, for the C++ mapping, a Slice sequence appears as a st d: : vect or, whereas, for the Java mapping, a Slice sequence appears as
a Java array. In order to determine what the API for a specific Slice construct looks like, you only need the Slice definition and knowledge of

the language mapping rules. The rules are simple and regular enough to make it unnecessary to read the generated code to work out how to
use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is inefficient because the generated code is not necessarily
suitable for human consumption. We recommend that you familiarize yourself with the language mapping rules; that way, you can mostly
ignore the generated code and need to refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, C#, Java, JavaScript, Python, Objective-C, and, for the client side, PHP and Ruby.
See Also

® C++ Mapping

® C# Mapping

® Java Mapping

® JavaScript Mapping
® Objective-C Mapping
®* PHP Mapping

® Python Mapping

® Ruby Mapping

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Client and Server Structure

Ice clients and servers have the logical internal structure:

Client Application Server Application
[1
Y
Proxy Skeleton Object
Code lce API lce API Adapter
Client lce Core de/» Searver lce Core
Metwork

|:| lce API

|:| Generated Code

Ice Client and Server Structure
Both client and server consist of a mixture of application code, library code, and code generated from Slice definitions:

® The Ice core contains the client- and server-side run-time support for remote communication. Much of this code is concerned with
the details of networking, threading, byte ordering, and many other networking-related issues that we want to keep away from
application code. The Ice core is provided as a number of libraries that client and server use.

® The generic part of the Ice core (that is, the part that is independent of the specific types you have defined in Slice) is accessed
through the Ice API. You use the Ice API to take care of administrative chores, such as initializing and finalizing the Ice run time. The
Ice APl is identical for clients and servers (although servers use a larger part of the API than clients).

® The proxy code is generated from your Slice definitions and, therefore, specific to the types of objects and data you have defined in
Slice. The proxy code has two major functions:

® |t provides a down-call interface for the client. Calling a function in the generated proxy API ultimately ends up sending an
RPC message to the server that invokes a corresponding function on the target object.

® |t provides marshaling and unmarshaling code. Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code converts data into a form that is standardized
for transmission and independent of the endian-ness and padding rules of the local machine. Unmarshaling is the reverse
of marshaling, that is, deserializing data that arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

® The skeleton code is also generated from your Slice definition and, therefore, specific to the types of objects and data you have
defined in Slice. The skeleton code is the server-side equivalent of the client-side proxy code: it provides an up-call interface that
permits the Ice run time to transfer the thread of control to the application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and return parameters and exceptions to the client.

® The object adapter is a part of the Ice API that is specific to the server side: only servers use object adapters. An object adapter has
several functions:

® The object adapter maps incoming requests from clients to specific methods on programming-language objects. In other
words, the object adapter tracks which servants with what object identity are in memory.

® The object adapter is associated with one or more transport endpoints. If more than one transport endpoint is associated
with an adapter, the servants incarnating objects within the adapter can be reached via multiple transports. For example,
you can associate both a TCP/IP and a UDP endpoint with an adapter, to provide alternate quality-of-service and
performance characteristics.

® The object adapter is responsible for the creation of proxies that can be passed to clients. The object adapter knows about

28 Copyright 2017, ZeroC, Inc.

29

Ice 3.6.4 Documentation

the type, identity, and transport details of each of its objects and embeds the correct details when the server-side
application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes involved: the client and the server. All the run time support
for distributed communication is provided by the Ice libraries and the code that is generated from Slice definitions. (For indirect proxies, a loc
ation service is required to resolve proxies to transport endpoints.)

See Also

® Hello World Application
® Locators

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Overview of the Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying transport. In addition, Ice also allows you to use SSL as a
transport, so all communication between client and server is encrypted.

The Ice protocol defines:

® anumber of message types, such as request and reply message types,

® a protocol state machine that determines in what sequence different message types are exchanged by client and server, together
with the associated connection establishment and tear-down semantics for TCP/IP,

® encoding rules that determine how each type of data is represented on the wire,

® a header for each message type that contains details such as the message type, the message size, and the protocol and encoding
version in use.

Ice also supports compression on the wire: by setting a configuration parameter, you can arrange for all network traffic to be compressed to
conserve bandwidth. This is useful if your application exchanges large amounts of data between client and server.

The Ice protocol is suitable for building highly-efficient event forwarding mechanisms because it permits forwarding of a message without
knowledge of the details of the information inside a message. This means that messaging switches need not do any unmarshaling and
remarshaling of messages — they can forward a message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to send a message to a callback object provided by the client, the
callback can be made over the connection that was originally created by the client. This feature is especially important when the client is
behind a firewall that permits outgoing connections, but not incoming connections.

See Also
® The Ice Protocol

® |ceSSL
® Bidirectional Connections

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Ice Services Overview

The Ice core provides a sophisticated client-server platform for distributed application development. However, realistic applications usually
require more than just a remoting capability: typically, you also need a way to start servers on demand, distribute proxies to clients, distribute
asynchronous events, configure your application, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The services are implemented as Ice servers to which your
application acts as a client. None of the services use Ice-internal features that are hidden from application developers so, in theory, you
could develop equivalent services yourself. However, having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first. Moreover, building such services is not a trivial effort, so it pays
to know what is available and use it instead of reinventing your own wheel.

On this page:

Freeze and FreezeScript
IceGrid Service

IceBox Server

IceStorm

IcePatch2

Glacier2

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it easy to store object state in a database: you define the state
stored by your objects in Slice, and the Freeze compiler generates code that stores and retrieves object state to and from a database.
Freeze uses Berkeley DB as its database.

Ice also offers a tool set collectively called FreezeScript that makes it easier to maintain databases and to migrate the contents of existing
databases to a new schema if the type definitions of objects change.

IceGrid Service

IceGrid is an implementation of an Ice location service that resolves the symbolic information in an indirect proxy to a protocol-address pair
for indirect binding. A location service is only the beginning of IceGrid's capabilities.

IceGrid:

® allows you to register servers for automatic start-up: instead of requiring a server to be running at the time a client issues a request,
IceGrid starts servers on demand, when the first client request arrives.

provides tools that make it easy to configure complex applications containing several servers.

supports replication and load-balancing.

automates the distribution and patching of server executables and dependent files.

provides a simple query service that allows clients to obtain proxies for objects they are interested in.

IceBox Server

IceBox is a simple application server that can orchestrate the starting and stopping of a number of application components. Application
components can be deployed as a dynamic library instead of as a process. This reduces overall system load, for example, by allowing you to
run several application components in a single Java virtual machine instead of having multiple processes, each with its own virtual machine.

lceStorm

IceStorm is a publish-subscribe service that decouples clients and servers. Fundamentally, IceStorm acts as a distribution switch for events.
Publishers send events to the service, which, in turn, passes the events to subscribers. In this way, a single event published by a publisher
can be sent to multiple subscribers. Events are categorized by topic, and subscribers specify the topics they are interested in. Only events
that match a subscriber's topic are sent to that subscriber. The service permits selection of a number of quality-of-service criteria to allow
applications to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large numbers of application components. (A typical example is
a stock ticker application with a large number of subscribers.) IceStorm decouples the publishers of information from subscribers and takes
care of the redistribution of the published events. In addition, lceStorm can be run as a federated service, that is, multiple instances of the
service can be run on different machines to spread the processing load over a number of CPUs.

Copyright 2017, ZeroC, Inc.

http://www.oracle.com/technology/products/berkeley-db

32

Ice 3.6.4 Documentation

IcePatch2

IcePatch2 is a software patching service. It allows you to easily distribute software updates to clients. Clients simply connect to the
IcePatch2 server and request updates for a particular application. The service automatically checks the version of the client's software and
downloads any updated application components in a compressed format to conserve bandwidth. Software patches can be secured using the
Glacier2 service, so only authorized clients can download software updates.

IcePatch2 supersedes IcePatch, which was a previous version of this service.

Glacier2

Glacier2 is the Ice firewall traversal service: it allows clients and servers to securely communicate through a firewall without compromising
security. Client-server traffic is SSL-encrypted using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

Glacier2 supersedes Glacier, which was a previous version of this service

See Also

IceGrid
Freeze
FreezeScript
Glacier2
IceBox
IceStorm
IcePatch2

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

Object-oriented semantics
Ice fully preserves the object-oriented paradigm "across the wire." All operation invocations use late binding, so the implementation
of an operation is chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and dispatch, as well as publish-subscribe messaging via
IceStorm. This allows you to choose a communication model according to the needs of your application instead of having to
shoe-horn the application to fit a single model.

Support for multiple interfaces
With facets, objects can provide multiple, unrelated interfaces while retaining a single object identity across these interfaces. This
provides great flexibility, particularly as an application evolves but needs to remain compatible with older, already deployed clients.

Machine independence
Clients and servers are shielded form idiosyncrasies of the underlying machine architecture. Issues such as byte ordering and
padding are hidden from application code.

Language independence
Client and server can be developed independently and in different programming languages. The Slice definition used by both client
and server establishes the interface contract between them and is the only thing they need to agree on.

Implementation independence
Clients are unaware of how servers implement their objects. This means that the implementation of a server can be changed after
clients are deployed, for example, to use a different persistence mechanism or even a different programming language.

Operating system independence
The Ice APIs are fully portable, so the same source code compiles and runs under both Windows and Unix.

Threading support
The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond synchronizing access to shared data) is required on
part of the application developer to develop threaded, high-performance clients and servers.

Transport independence
Ice currently offers both TCP/IP and UDP as transport protocols. Neither client nor server code are aware of the underlying
transport. (The desired transport can be chosen by a configuration parameter.)

Location and server transparency

The Ice run time takes care of locating objects and managing the underlying transport mechanism, such as opening and closing
connections. Interactions between client and server appear connection-less. Via lceGrid, you can arrange for servers to be started
on demand if they are not running at the time a client invokes an operation. Servers can be migrated to different physical addresses
without breaking proxies held by clients, and clients are completely unaware how object implementations are distributed over server
processes.

Security

Communications between client and server can be fully secured with strong encryption over SSL, so applications can use
unsecured public networks to communicate securely. Via Glacier2, you can implement secure forwarding of requests through a
firewall, with full support for callbacks.

Built-in persistence
With Freeze, creating persistent object implementations becomes trivial. Ice comes with built-in support for Berkeley DB, which is a
high-performance database.

Source code availability
The source code for Ice is available. While it is not necessary to have access to the source code to use the platform, it allows you to
see how things are implemented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment for distributed computing that is more complete than any
other platform we are aware of.

See Also

33

Ice Architecture
Ice Services Overview

Copyright 2017, ZeroC, Inc.

http://www.oracle.com/technology/products/berkeley-db

34

Ice 3.6.4 Documentation

Hello World Application

This section presents a very simple (but complete) client and server.
Writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, you do not need to write the Slice definition, only compile it
(and, obviously, you do not need to write the server in that case).

The application described here enables remote printing: a client sends the text to be printed to a server, which in turn sends that text to a
printer. For simplicity (and because we do not want to concern ourselves with the idiosyncrasies of print spoolers for various platforms), our
printer will simply print to a terminal instead of a real printer. This is no great loss: the purpose of the exercise is to show how a client can
communicate with a server; once the thread of control has reached the server application code, that code can of course do anything it likes
(including sending the text to a real printer). How to do this is independent of Ice and therefore not relevant here.

Much of the detail of the source code will remain unexplained for now. The intent is to show you how to get started and give you a
feel for what the development environment looks like; we will provide all the detail throughout the remainder of this manual.

Topics

Writing a Slice Definition

Writing an Ice Application with C++

Writing an Ice Application with C-Sharp
Writing an Ice Application with Java
Writing an Ice Application with JavaScript
Writing an Ice Application with Objective-C
Writing an Ice Application with PHP
Writing an Ice Application with Python
Writing an Ice Application with Ruby
Writing an Ice Application with Visual Basic

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Writing a Slice Definition

The first step in writing any Ice application is to write a Slice definition containing the interfaces that are used by the application. For our
minimal printing application, we write the following Slice definition:

Slice

nmodul e Dero {
interface Printer {
void printString(string s);
b
s

We save this text in a file called Printer.ice.

Our Slice definitions consist of the module Deno containing a single interface called Pri nt er . For now, the interface is very simple and
provides only a single operation, called pri nt Stri ng. The pri nt St ri ng operation accepts a string as its sole input parameter; the text of
that string is what appears on the (possibly remote) printer.

See Also

® The Slice Language

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Writing an Ice Application with C++

This page shows how to create an Ice application with C++.
On this page:

® Compiling a Slice Definition for C++

® Writing and Compiling a Server in C++
® Writing and Compiling a Client in C++
® Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to generate C++ proxies and skeletons. You can compile the
definition as follows:

$ slice2cpp Printer.ice

The sl i ce2cpp compiler produces two C++ source files from this definition, Pri nt er. h and Pri nt er. cpp.

® Printer.h
The Pri nt er. h header file contains C++ type definitions that correspond to the Slice definitions for our Pri nt er interface. This

header file must be included in both the client and the server source code.

® Printer.cpp
The Pri nt er. cpp file contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the pri nt St
ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er. cpp file must be compiled and linked into both client and server.

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:

C++

36 Copyright 2017, ZeroC, Inc.

37

Ice 3.6.4 Documentation

#i nclude <lcel/lce. h>
#i nclude <Printer. h>

usi ng nanmespace std;
usi ng nanespace Deno;

class Printerl : public Printer {
publi c:
virtual void printString(const string& s, const lce::Current&);
s
voi d
Printerl::

printString(const string& s, const lce::Currentg&)

{

cout << s << endl

}

i nt
mai n(int argc, char* argv[])
{
int status = 0;
| ce:: Communi catorPtr ic;
try {
ic =lce::initialize(argc, argv);
I ce:: (bj ect AddapterPtr adapter =

i c->creat eObj ect Adapt er Wt hEndpoi nt s("Si npl ePri nt er Adapt er'

p 10000");
I ce::QbjectPtr object = new Printerl

", "default -

adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));

adapt er->activate();
i ¢c->wai t For Shut down() ;
} catch (const Ice::Exception& e) {
cerr << e << endl
status = 1;
} catch (const char* nsg) {
cerr << msg << endl
status = 1,

}
if (ic) {
try {
i c->destroy();
} catch (const lce:: Exception& e) {
cerr << e << endl
status = 1;
}
}

return status;

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include Pri nt er.
h, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the contents of the st

d and Denp namespaces for brevity in the code that follows:

C++

#i ncl ude <lce/lce. h>
#i ncl ude <Printer. h>

usi ng namespace std;
usi ng nanespace Deno;

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

C++

nanespace Deno {

class Printer virtual public Ice:: Object {
public:
virtual void printString(const std::string& const Ice::Current&
= lce::Current()) = 0;
b

H

The Pri nt er skeleton class definition is generated by the Slice compiler. (Note that the pri nt St ri ng method is pure virtual so the

skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual pri

nt St ri ng method. (By convention, we use an | -suffix to indicate that the class implements an interface.)

C++

class Printerl
publi c:
vi rtual

public Printer {

void printString(const string& s, const lce::Current&);

s

The implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout :

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
voi d
Printerl::
printString(const string& s, const lce::Current&)
{

cout << s << endl;

Note that pri nt St ri ng has a second parameter of type | ce: : Curr ent . As you can see from the definition of Pri nter:: printString,
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the

purpose of the | ce: : Curr ent parameter later.)

What follows is the server main program. Note the general structure of the code:

C++

i nt
mai n(int argc, char* argv[])
{

int status = 0;

| ce:: Communi catorPtr ic;

try {

/1 Server inplementation here...

} catch (const Ice:: Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << msg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;

}

return status;

The body of mai n contains the declaration of two variables, st at us and i c. The st at us variable contains the exit status of the program

and the i c variable, of type | ce: : Communi cat or Pt r, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by two cat ch handlers. The first handler catches
all exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception
anywhere, the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The
second handler catches string constants; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply

39

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

throw a string literal with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then
returns failure to the operating system.

Following the t ry block, we see a bit of cleanup code that calls the dest r oy method on the communicator (provided that the communicator
was initialized). The cleanup call is outside the first t ry block for a reason: we must ensure that the Ice run time is finalized whether the
code terminates normally or terminates due to an exception.

Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t ry block contains the actual server code:

C++

ic =lce::initialize(argc, argv);
| ce:: Qvj ect AddapterPtr adapter =

i c->creat eObj ect Adapt er Wt hEndpoi nts("Si npl ePri nter Adapter", "default -
p 10000");
lce::(bjectPtr object = new Printerl
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er->activate();
i ¢c->wai t For Shut down() ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling | ce: ;i nitial i ze. (We pass ar gc and ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns a smart pointer to an | ce: : Conmruni cat or object, which is the main object in the Ice
run time.

. We create an object adapter by calling cr eat eCbj ect Adapt er W t hEndpoi nt s on the Conmruni cat or instance. The arguments

we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Pri nterl o

bject.

. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant

we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we

have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by

making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce: : Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: six lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . cpp, we can compile it as follows:

$ c++ -1. -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. Depending on your platform, you may have
to add additional include directives or other options to the compiler; please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

40

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716063#TheServer-SidemainFunctioninC++-application

Ice 3.6.4 Documentation

$ c++ -0 server Printer.o Server.o -llce -lIlcelUti

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail. The important point to note here is that the Ice run time is shipped in two libraries, | i bl ce and I i bl ceUti | .

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:

C++

#i ncl ude <lce/lce. h>
#i nclude <Printer. h>

usi ng nanmespace std;
usi ng nanespace Deno;

i nt
mai n(i nt argc, char* argv[])
{
int status = 0;
I ce:: Comruni catorPtr ic;
try {
ic =lce::initialize(argc, argv);
Ice::ObjectPrx base = ic->stringToProxy("Si nplePrinter:default
-p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base);
if (!printer)
throw "I nvalid proxy";

printer->printString("Hello Wrld!");
} catch (const Ilce::Exception& ex) {
cerr << ex << endl
status = 1,
} catch (const char* nsg) {
cerr << msg << endl
status = 1;
}
if (ic)
i c->destroy();
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t ry block does the following:

1. As for the server, we initialize the Ice run time by calling I ce: :initiali ze.
2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

Copyright 2017, ZeroC, Inc.

42

Ice 3.6.4 Documentation

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Prx: : checkedCast . A checked cast sends a message to the server, effectively asking "is this
a proxy for a Pri nt er interface?" If so, the call returns a proxy to a Pr i nt er ; otherwise, if the proxy denotes an interface of some
other type, the call returns a null proxy.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -1. -1$I CE_HOVE/include -c Printer.cpp Cient.cpp
$ c++ -o client Printer.o Client.o -llce -llceltil

Running Client and Server in C++

To run client and server, we first start the server in a separate window:

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce: : Appl i cation.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 471: | ce:: Connect Fai | edExcepti on:
connect failed: Connection refused

See Also

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
The | ce: : Appl i cati on Class
The Current Object

IceGrid

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716063#TheServer-SidemainFunctioninC++-application
https://doc.zeroc.com/pages/viewpage.action?pageId=16716063#TheServer-SidemainFunctioninC++-application

43

Ice 3.6.4 Documentation

Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.
On this page:

® Compiling a Slice Definition for C#

® Writing and Compiling a Server in C#
® Writing and Compiling a Client in C#
® Running Client and Server in C#

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to generate C# proxies and skeletons. You can compile the
definition as follows:

> nkdir generated
> slice2cs --output-dir generated Printer.ice

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in C#

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Server. cs:

C#

usi ng System
public class Printerl : Denpb.PrinterD sp_
{

public override void printString(string s, lce.Current current)

{

Consol e. Wi teLine(s);

}

}

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver. cs and is shown in full here:

Copyright 2017, ZeroC, Inc.

44

Ice 3.6.4 Documentation

C#

public class Server
{
public static void Main(string[] args)
{
int status = 0;
| ce. Communi cator ic = null;
try {
ic =lce.Uil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.creat eObj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nt er Adapt
er", "default -p 10000");
I ce.bject obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinplePrinter"));
adapter. activate();
i c.wai t For Shut down() ;
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;

}
if (ic!=null) {
/1 Cean up
I
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}

Envi ronnent . Exi t (st at us);

Note the general structure of the code:

Copyright 2017, ZeroC, Inc.

45

Ice 3.6.4 Documentation

C#
public class Server
{
public static void Main(string[] args)
{
int status = 0;
| ce. Communi cator ic = null;
try {
/1 Server inplenmentation here...
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1l Cean up
I
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (st at us);
}
}

The body of Mai n contains at ry block in which we place all the server code, followed by a cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The structure shown above closely resembles that of other Ice language mappings such as C++ and Java. We can simplify things a bit in C#
by taking advantage of the fact that the | ce. Communi cat or object implements | Di sposabl e, which allows us to write a usi ng statement
as follows:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C#
public class Server
{
public static void Main(string[] args)
{
int status = 0;
try {
usi ng(lce. Conmunicator ic = lce.Uil.initialize(ref args)) {

| ce. Ohj ect Adapt er adapter =

i c. creat eCbj ect Adapt er Wt hEndpoi nts("Si npl ePri nter Adapter"”, "defau
t -p 10000");
I ce.hject obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c.wai t For Shut down() ;
}
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1,

}

Envi ronnent . Exi t (st at us);

We've eliminated the need for the clean-up code block because the usi ng statement automatically calls Di spose on the communicator,
which is equivalent to invoking its dest r oy method.

The body of our t ry block contains the actual server code:

C#

usi ng(l ce. Communi cator ic = lce.Uil.initialize(ref args)) {
| ce. Ohj ect Adapt er adapter =

i c. creat eCbj ect Adapt er Wt hEndpoi nts("Si npl ePrinter Adapter"”, "default -p
10000");
I ce. Cbject obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinplePrinter"));
adapt er. acti vate();
i c.wai t For Shut down() ;

The code goes through the following steps:

1.

46

We initialize the Ice run time by calling I ce. Uti | .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments

Copyright 2017, ZeroC, Inc.

47

Ice 3.6.4 Documentation

we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Printer| o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by

making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:lce.dll /1ib:9% CE_HOVE% Assenbl i es Server.cs
generated\Printer.cs

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOVE environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set | CE_HOVE to that
path.)

Writing and Compiling a Client in C#
The client code, in C i ent . cs, looks very similar to the server.

Here itis in full:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+C-Sharp#TheServer-SidemainMethodinC-Sharp-application

Ice 3.6.4 Documentation

C#
usi ng System
usi ng Deno;
public class dient
{
public static void Main(string[] args)
{
int status = 0;
try {
usi ng(lce. Conmuni cator ic = lce.Uil.initialize(ref args)) {
I ce.bjectPrx obj = ic.stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrxHel per.checkedCast (obj);
if (printer == null)
throw new Applicati onException("Invalid proxy");
printer.printString("Hello Wrld!'");
}
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
Envi ronnent . Exi t (st at us);
}
}

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

1. As for the server, we initialize the Ice run time by calling I ce. Util .initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter: default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.

3. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:lce.dll /lib:9% CE HOVE% Assenblies Cient.cs
generated\Printer.cs

Running Client and Server in C#

Copyright 2017, ZeroC, Inc.

49

Ice 3.6.4 Documentation

To run client and server, we first start the server in a separate window:

$ server. exe

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ client. exe
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connecti onRef usedExcepti on
error =0
at lcelnternal.ProxyFactory. checkRetryAfter Exception(Local Exception
ex, Reference ref, Int32 cnt)
at | ce. vj ect PrxHel per Base. handl eException__(Obj ect Del _ del egate, Lo
cal Exception ex, Int32 cnt)
at |ce. Qbj ect PrxHel perBase.ice_isA(String id__, Dictionary 2 context
__, Bool ean explicitContext_)
at | ce. Qvj ect PrxHel perBase.ice_isA(String id_)
at Deno. Print er PrxHel per. checkedCast (Obj ect Prx b)
at Cdient.Main(String[] args)
Caused by: System Conponent Model . Wn32Exception: No connection could be
made because the target machine actively refused
it

Note that, to successfully run client and server, the C# run time must be able to locate the | ce. dl | library. (Under Windows, one way to
ensure this is to copy the library into the current directory. Please consult the documentation for your C# run time to see how it locates
libraries.)

See Also

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
The | ce. Appl i cati on Class

The Current Object

IceGrid

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+C-Sharp#TheServer-SidemainMethodinC-Sharp-application
https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+C-Sharp#TheServer-SidemainMethodinC-Sharp-application

Ice 3.6.4 Documentation

Writing an Ice Application with Java

This page shows how to create an Ice application with Java.
On this page:

® Compiling a Slice Definition for Java

® Writing and Compiling a Server in Java
® Writing and Compiling a Client in Java
® Running Client and Server in Java

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to generate Java proxies and skeletons. You can compile the
definition as follows:

$ nkdir generated
$ slice2java --output-dir generated Printer.ice

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2j ava compiler produces a number of Java source files from this definition. The exact
contents of these files do not concern us for now — they contain the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in Java

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Printerl.java:

Java
public class Printerl extends Deno. PrinterDisp {
public void
printString(String s, Ice.Current current)
{

System out. println(s);

The Printerl class inherits from a base class called _Pri nt er Di sp, which is generated by the sl i ce2j ava compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code is in a source file called Ser ver . j ava, shown in full here:

Copyright 2017, ZeroC, Inc.

51

Ice 3.6.4 Documentation

Java
public class Server {

public static void
mai n(String[] args)
{

int status = 0;

| ce. Communi cator ic = null;

try {

ic =lce.Uil.initialize(args);

| ce. Obj ect Adapt er adapter =
i c.creat eObj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nt er Adapt
er", "default -p 10000");
I ce. Obj ect object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinmplePrinter"));
adapter. activate();
i c.wai t For Shut down() ;
} catch (lce. Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e.getMessage());
status = 1;

}
if (ic!=null) {
/1 Cean up
11
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.getMessage());
status = 1;
}
}

System exi t (status)

Note the general structure of the code:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Java

public class Server ({
public static void
mai n(String[] args)
{
int status = 0;
| ce. Communi cator ic = null;

try {

/1 Server inplementation here..

} catch (lce.Local Exception e) {
e.printStackTrace();
status = 1;

} catch (Exception e) {
Systemerr.println(e.getMessage());
status = 1;

}

if (ic!=null) {

/1 Cean up

11

try {
i c.destroy();

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

System exi t (st at us)

The body of mai n contains a t ry block in which we place all the server code, followed by two cat ch blocks. The first block catches all
exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception anywhere,
the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The second block
catches Except i on exceptions; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply throw an
exception with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then returns

failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

52

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Java

ic =lce. Uil.initialize(args);
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts("Si npl ePri nt er Adapt

er", "default -p 10000");

I ce. Object object = new Printerl();

adapt er. add(object, ic.stringToldentity("SinplePrinter"));

adapter. activate();

i c. wai t For Shut down() ;

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Util .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er W t hEndpoi nt s on the Conmuni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Pri nterl o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ nkdir cl asses
$ javac -d classes -classpath classes: $I CE_ HOVE/ i b/1ce.jar \
Server.java Printerl.java generated/ Deno/*.java

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOVE environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Note that Ice for Java uses the ant build environment to control building of source code. (ant is similar to make, but more flexible
for Java applications.) You can have a look at the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client in Java

The client code, in A i ent . j ava, looks very similar to the server. Here it is in full:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+Java#TheServer-SidemainMethodinJava-application

Ice 3.6.4 Documentation

Java
public class dient {
public static void
mai n(String[] args)
{
int status = 0;
| ce. Communi cator ic = null
try {
ic =lce.Uil.initialize(args);
I ce. ObjectPrx base = ic.stringToProxy("SinplePrinter:defau
t -p 10000");

Deno. PrinterPrx printer
= Denv. Pri nt er PrxHel per. checkedCast (base);
if (printer == null)
throw new Error("Invalid proxy");

printer.printString("Hello World!'");
} catch (lce. Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e.getMessage());
status = 1;

}
if (ic!=null) {
/1 Clean up
/1
try {
i c.destroy();
} catch (Exception e) {
Systemerr.println(e.getMessage());
status = 1;
}
}

System exi t (status)

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

1. As for the server, we initialize the Ice run time by calling I ce. Uil .initiali ze.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Denp: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

54 Copyright 2017, ZeroC, Inc.

55

Ice 3.6.4 Documentation

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes: $I CE_ HOVE/ | i b/l ce.jar \
Cient.java Printerl.java generated/ Deno/*.|java

Running Client and Server in Java

To run client and server, we first start the server in a separate window:

$ java Server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ java dient
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cation.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connecti onRef usedExcepti on

error =0
at
I cel nternal . Connect Request Handl er . get Connect i on(Connect Request Handl er . |
ava: 240)
at
I cel nternal . Connect Request Handl er. sendRequest (Connect Request Handl er . j av
a: 138)

at |celnternal.Qutgoing.invoke(Qutgoing.java: 66)
at lce. (bjectDel Mice_ isA(_njectDel Mjava: 30)
at | ce. vj ect PrxHel perBase. i ce_i SA(Obj ect PrxHel per Base. j ava: 111)
at | ce. nj ect PrxHel perBase. i ce_i sA(Ohj ect PrxHel per Base. j ava: 77)
at Deno. Hel | oPr xHel per . checkedCast (Hel | oPr xHel per . j ava: 228)
at dient.run(dient.java: 65)

Caused by: java.net.Connect Exception: Connection refused

Note that, to successfully run client and server, your CLASSPATH must include the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH../cl asses: $I CE_HOWE/ li b/ I ce.jar

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+Java#TheServer-SidemainMethodinJava-application

56

Ice 3.6.4 Documentation

Please have a look at the demo applications that ship with Ice for the details for your platform.

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The | ce. Appl i cati on Class
The Current Object

IceGrid

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+Java#TheServer-SidemainMethodinJava-application

57

Ice 3.6.4 Documentation

Writing an Ice Application with JavaScript

This page shows how to create an Ice client application with JavaScript.
On this page:

® Compiling a Slice Definition for JavaScript
® Writing a Client in JavaScript
® Running the Client in JavaScript

Compiling a Slice Definition for JavaScript

The first step in creating our JavaScript application is to compile our Slice definition to generate JavaScript proxies. You can compile the

definition as follows:

$ slice2js Printer.ice

The sl i ce2j s compiler produces a single source file, Pri nt er. j s, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Writing a Client in JavaScript

The client code, in d i ent . j s, is shown below in full:

Copyright 2017, ZeroC, Inc.

58

Ice 3.6.4 Documentation

JavaScript

var lce = require("ice").lce
var Deno = require("./Printer"). Deno;

var ic;

I ce. Promi se.try(
function()
{
ic =lce.initialize();
var base = ic.stringToProxy("SinplePrinter:default -p 10000");
return Deno. PrinterPrx.checkedCast (base) .t hen(
function(printer)

{
return printer.printString("Hello Wrld!");
1
}
). finally(
function()
{
if(ic)
{
return ic.destroy();
}
}

) . exception(
function(ex)
{
consol e.l og(ex.toString());
process.exit(1);

1)

The program begins with r equi r e statements that assign modules from the Ice run time and the generated code to convenient local

variables. (These statements are necessary for use with NodeJS. Browser applications would omit these statements and load the modules a
different way.)

The program begins with a call to | ce. Proni se. t ry to launch a chain of promises (or futures) that handles the asynchronous nature of Ice
invocations with a structure that resembles synchronous code.

1.

The function passed to t r y is executed immediately. The body of this function begins by calling | ce. i ni ti al i ze to initialize the
Iceruntime. The calltoi ni ti al i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Cbj ect interface. To do this, we
need to do a down-cast by calling Denp. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x; otherwise, if
the proxy denotes an interface of some other type, the call returns nul | .

. The checkedCast function involves a remote invocation to the server, which means this function has asynchronous semantics and

therefore it returns a new promise object.

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/JavaScript+Mapping+for+Operations#JavaScriptMappingforOperations-promise

59

Ice 3.6.4 Documentation

. We call t hen on the promise returned by checkedCast and supply a "success" function, meaning the code that's executed when c

heckedCast succeeds. This inner function accepts one argument, pri nt er, representing a proxy to the newly-downcasted object,
or nul | if the remote object doesn't support the Pri nt er interface.

. Inside the success function, we now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the

time-honored " Hel | o Wor | d!' " string. The server prints that string on its terminal. Again, pri nt St ri ng is a remote invocation,
and it returns a promise that the success function passes along as its own return value.

. The t hen function also returns a new promise which our outer function passes back to t ry. This outer promise is chained to the

promise associated with the pri nt St ri ng invocation; the outer promise completes successfully if and when the print Stri ng inv
ocation completes successfully.

. The function passed to f i nal | y is executed after the t r y block has completed, whether or not it completes successfully. If we

created a communicator in the t ry block, we destroy it here. Doing this is essential in order to correctly finalize the Ice run time: the
program must call dest r oy on any communicator it has created; otherwise, undefined behavior results. The dest r oy function has
asynchronous semantics, so we return its promise to ensure no subsequent code is executed until dest r oy completes.

. Lastly, the function passed to except i on is the default exception handler for this entire promise chain.

Running the Client in JavaScript

The server must be started before the client. Since Ice for JavaScript does not currently include a complete server-side implementation, we

need to use a server from another language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ node Client.js
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by

the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get

something like the following:

| ce:: Connecti onRef usedExcepti on
i ce_cause: "Error: connect ECONNREFUSED'
error: "ECONNREFUSED'

Note that, to successfully run the client, NodeJS must be able to locate the Ice for JavaScript modules. See the Ice for JavaScript installation

instructions for more information.

See Also

® Client-Side Slice-to-Ruby Mapping
® IceGrid

Copyright 2017, ZeroC, Inc.

60

Ice 3.6.4 Documentation

Writing an Ice Application with Objective-C

This page shows how to create an Ice application with Objective-C.

On this page:

Compiling a Slice Definition for Objective-C
Writing and Compiling a Server in Objective-C
Writing and Compiling a Client in Objective-C
Running Client and Server in Objective-C

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice definition to generate Objective-C proxies and skeletons. You can

compile the definition as follows:

$ slice2objc Printer.ice

The sl i ce2obj ¢ compiler produces two Objective-C source files from this definition, Pri nter. hand Pri nter. m

® Printer.h

The Pri nt er. h header file contains Objective-C type definitions that correspond to the Slice definitions for our Pri nt er interface.
This header file must be included in both the client and the server source code.

® Printer.m

The Pri nt er . mfile contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the pri nt St
ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er . mfile must be compiled and linked into both client and server.

Writing and Compiling a Server in Objective-C

The source code for the server takes only a few lines and is shown in full here:

Objective-C
#inport <lcel/lce. h>
#inport <Printer.h>
#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>
@nterface Printerl : DenmoPrinter <DenmoPrinter>
@nd
@ npl ementation Printerl
-(void) printString: (NSMutabl eString *)s
current: (I CECurrent *)current
{
printf("%\n", [s UTF8String]);
}
@nd
i nt

mai n(int argc, char* argv[])

Copyright 2017, ZeroC, Inc.

61

Ice 3.6.4 Documentation

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

int status = 1;
i d<| CECommuni cat or > conmuni cator = nil;
@ry {

communi cator = [ICEUtil createConmunicator: &rgc argv: argv];

i d<| CECbj ect Adapt er > adapter =
[communi cat or creat eObj ect Adapt er Wt hEndpoi nt s:
@ Si npl ePri nt er Adapt er”
endpoi nts: @default -p 10000"];

| CEQbj ect *object = [[[Printerl alloc] init] autorel ease];

[adapt er add: obj ect identity:[comunicator
stringToldentity: @Si nplePrinter"]];

[adapter activate];

[communi cat or wai t For Shut down] ;

status = O;

} @atch (NSException* ex) {
NSLog(@ %@, ex);

}

@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}

[pool release];

Copyright 2017, ZeroC, Inc.

62

Ice 3.6.4 Documentation

return status;

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include Pri nt er.
h, which was generated by the Slice compiler and contains the Objective-C definitions for our printer interface. In addition, we import headers
to allow us to use an autorelease pool and to produce output:

Objective-C

#inport <lcel/lce. h>
#inport <Printer.h>

#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

Objective-C
@rotocol DenoPrinter <ICEChject>
-(void) printString: (NSMutabl eString *)s
current: (I CECurrent *)current;

@nd

@nterface DenoPrinter : | CEOQbject
I ..
@nd

The DenoPr i nt er protocol and class definitions are generated by the Slice compiler. The protocol defines the pri nt St ri ng method,
which we must implement in our servant. The DenoPr i nt er class contains methods that are internal to the mapping, so we are not
concerned with these. However, our servant must derive from this skeleton class:

Objective-C
@nterface Printerl : DenpPrinter <DenoPrinter>

@nd

@npl ementation Printerl
-(void) printString: (NSMutabl eString *)s
current: (I CECurrent *)current
printf("%\n", [s UTF8String]);

@nd

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

As you can see, the implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout .

Note that pri nt St ri ng has a second parameter of type | CECur r ent . The Ice run time passes additional information about an incoming
request to the servant in this parameter. For now, we will ignore it.

What follows is the server main program. Note the general structure of the code:

Objective-C
i nt
mai n(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
int status = 1;
i d<I CEConmmuni cat or > conmuni cator = nil;
@ry {
communi cator = [ICEUti| createConmnunicator: &rgc argv: argv];
/1 Server inplementation here...
status = O;
} @atch (NSException* ex) ({
NSLog(@ %@, ex);
}
@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
[pool release];
return status;
}

The body of mai n instantiates an autorelease pool, which it releases before returning to ensure that the program does not leak memory. mai
n contains the declaration of two variables, st at us and conmruni cat or . The st at us variable contains the exit status of the program and
the conmruni cat or variable, of type i d<I CEConmuni cat or >, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by a cat ch handler that logs any unhandled
exceptions.

Before returning, mai n executes a bit of cleanup code that calls the dest r oy method on the communicator. The cleanup call is outside the
first t ry block for a reason: we must ensure that the Ice run time is finalized whether the code terminates normally or terminates due to an
exception.

Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t r y block contains the actual server code:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Objective-C
communi cator = [ICEUti | createConmunicator: &rgc argv: argv];

i d<| CECbj ect Adapt er > adapter =
[communi cat or creat eObj ect Adapt er Wt hEndpoi nt s:
@ Si npl ePri nt er Adapter”
endpoi nts: @default -p 10000"];

| CEQbj ect *object = [[[Printerl alloc] init] autorel ease];

[adapt er add: object identity:[comunicator
stringToldentity: @Si nplePrinter”]];

[adapter activate];

[communi cat or wai t For Shut down] ;

The code goes through the following steps:

1. We initialize the Ice run time by calling cr eat eConmruni cat or . (We pass ar gc and ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to cr eat eComruni cat or returns a value of type i d<I CEConmuni cat or >, which is the main object in the
Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nterl o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. As far as actual application code is concerned, the server contains only a few lines:
nine lines for the definition of the Pri nt er | class, plus three lines to instantiate a Pri nt er I object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . m we can compile it as follows:

$ cc -c -1. -1$ICE_HOVE i nclude Printer.m Server. m

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOVE environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ Printer.o Server.o -0 server -L$ICE_HOVE/lib -11ceCbjC -franework
Foundati on

64 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail.

Writing and Compiling a Client in Objective-C

The client code looks very similar to the server. Here it is in full:

Objective-C

#inport <lcel/lce. h>
#inport <Printer.h>

#i nport <Foundati on/ NSAut or el easePool . h>
#i mport <stdio. h>

i nt
mai n(int argc, char* argv[])
{

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

int status = 1;

i d<l| CECommuni cat or> conmuni cator = nil;

@ry {
communi cator = [ICEUti | createConmnunicator: &rgc argv: argv];
i d<| CEQbj ect Prx> base = [conmuni cat or

stringToProxy: @Si npl ePrinter:default -p 10000"];
i d<DemoPrinterPrx> printer = [DenoPrinterPrx checkedCast: base];
if(!'printer)
[NSException raise: @lnvalid proxy" format:nil];

[printer printString: @Hello World!l"];

status = 0O;
} @atch (NSException* ex) ({
NSLog(@ %@, ex);

@ry {
[communi cat or destroy];
} @atch (NSException* ex) ({
NSLog(@ %@, ex);

[pool release];
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t ry block does the following:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

. As for the server, we initialize the Ice run time by calling cr eat eConmuni cat or .
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type i d<I CEQbj ect Pr x>, which is at the root of the inheritance tree for interfaces

and classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling the checkedCast class method on the DenpPr i nt er Pr x class. A checked cast sends a
message to the server, effectively asking "is this a proxy for a Pri nt er interface?" If so, the call returns a proxy toa Pri nter;
otherwise, if the proxy denotes an interface of some other type, the call returns a null proxy.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ cc-c -l. -1$ICE_HOW include Printer.mdient.m
$ c++ Printer.o Client.o -o client -L$ICE_HOW |ib -11ceCbjC -franmework
Foundat i on

Running Client and Server in Objective-C

To run client and server, we first start the server in a separate window:

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 1218: I ce:: Connecti onRef usedExcepti on:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set DYLD_LI BRARY_PATH to include the Ice library directory. Please see
the installation instructions and the demo applications that ship with Ice Touch for details.

See Also

66

Client-Side Slice-to-Objective-C Mapping
Server-Side Slice-to-Objective-C Mapping
The Current Object

IceGrid

Copyright 2017, ZeroC, Inc.

67

Ice 3.6.4 Documentation

Writing an Ice Application with PHP

This page shows how to create an Ice client application with PHP.
On this page:

® Compiling a Slice Definition for PHP
® Writing a Client in PHP
® Running the Client in PHP

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our Slice definition to generate PHP code. You can compile the definition as

follows:

$ slice2php Printer.ice

The sl i ce2php compiler produces a single source file, Pri nt er . php, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Writing a Client in PHP

The client code, in d i ent . php, is shown below in full:

Copyright 2017, ZeroC, Inc.

68

Ice 3.6.4 Documentation

PHP

<?php
require 'lce. php';
require 'Printer. php';

$ic = null;
try
{
$ic = lce_initialize();

$base = $ic->stringToProxy("SinplePrinter:default -p 10000");
$printer = Deno_PrinterPrxHel per::checkedCast ($base);
if(!$printer)

t hrow new Runti meException("lnvalid proxy");

$printer->printString("Hello Wrld!'");

}
cat ch(Excepti on $ex)
{
echo $ex;
}
i f($ic)
{
/1 Cean up
try
{
$i c->destroy();
}
cat ch(Exception $ex)
{
echo $ex;
}
}
?>

The program begins with r equi r e statements to load the Ice run-time definitions (I ce. php) and the code we generated from our Slice
definition in the previous section (Pri nt er. php).

The body of the main program contains a t r y block in which we place all the client code, followed by a cat ch block. The cat ch block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our t ry block goes through the following steps:

1.

2.

We initialize the Ice run time by calling | ce_i nitiali ze. Thecalltoinitialize returns an| ce_Conmuni cat or reference,
which is the main object in the Ice run time.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce_Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we

Copyright 2017, ZeroC, Inc.

69

Ice 3.6.4 Documentation

need to do a down-cast by calling Deno_Pr i nt er Pr xHel per: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy narrowed to the Pri nt er interface
; otherwise, if the proxy denotes an interface of some other type, the call returns nul | .

4. We test that the down-cast succeeded and, if not, throw an exception that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time. If a script neglects to destroy the communicator, Ice destroys it automatically.

Running the Client in PHP

The server must be started before the client. Since Ice for PHP does not support server-side behavior, we need to use a server from another
language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window using
PHP's command-line interpreter:

$ php -f dient.php
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce::ConnectionRef usedExcepti on

{

error = 111

Note that, to successfully run the client, the PHP interpreter must be able to locate the Ice extension for PHP. See the Ice for PHP
installation instructions for more information.

See Also

® Client-Side Slice-to-PHP Mapping
® IceGrid

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Writing an Ice Application with Python

This page shows how to create an Ice application with Python.
On this page:

® Compiling a Slice Definition for Python
® Writing a Server in Python

® Writing a Client in Python

® Running Client and Server in Python

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition to generate Python proxies and skeletons. You can compile
the definition as follows:

$ slice2py Printer.ice

The sl i ce2py compiler produces a single source file, Pri nt er _i ce. py, from this definition. The compiler also creates a Python package
for the Denp module, resulting in a subdirectory named Denp. The exact contents of the source file do not concern us for now — it contains
the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Server in Python

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nterl :

Python

class Printerl (Deno.Printer):
def printString(self, s, current=None):
print s

The Printerl class inherits from a base class called Deno. Pri nt er, which is generated by the sl i ce2py compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code, in Ser ver . py, follows our servant class and is shown in full here:

70 Copyright 2017, ZeroC, Inc.

71

Ice 3.6.4 Documentation

Python

i mport sys, traceback, Ice
i mport Deno

class Printerl(Denp.Printer):
def printString(self, s, current=None):
print s

status = 0
ic = None
try:
ic =lce.initialize(sys.argv)

", "default -p 10000")
object = Printerl()

adapt er. activate()

i ¢c.wait For Shut down()
except:

traceback. print_exc()

status = 1

if ic:
Clean up
try:
i c.destroy()
except:
traceback. print_exc()
status =1

sys. exit(status)

adapter = ic.createObject Adapter Wt hEndpoi nts("Si npl ePri nt er Adapt er

adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"))

Note the general structure of the code:

Copyright 2017, ZeroC, Inc.

72

Ice 3.6.4 Documentation

Python
status = 0
ic = None
try:

Server inplenmentation here..

except:
traceback. print_exc()
status =1

if ic:
Cl ean up
try:
i c.destroy()
except:
traceback. print_exc()
status =1

sys. exit(status)

The body of the main program contains a t ry block in which we place all the server code, followed by an except block. The except block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

Python

ic = lce.initialize(sys.argv)

adapter = ic.createObject Adapter Wt hEndpoi nts("Si npl ePrinterAdapter”, "
default -p 10000")

object = Printerl ()

adapt er. add(object, ic.stringToldentity("SinplePrinter"))

adapter. activate()

i ¢c.wai t For Shut down()

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. i niti al i ze. (We pass sys. ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er W t hEndpoi nt s on the Conmuni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nterl o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: three lines for the definition of the Pri nt er | class, plus two lines to
instantiate a Pri nt er | object and register it with the object adapter.

Writing a Client in Python

The client code, in O i ent . py, looks very similar to the server. Here it is in full:

Python

i mport sys, traceback, Ice
i mport Deno

status = 0
ic = None
try:
ic =lce.initialize(sys.argv)
base = ic.stringToProxy("Si nplePrinter:default -p 10000")
printer = Denvo. PrinterPrx.checkedCast (base)
if not printer:
rai se RuntineError("lnvalid proxy")

printer.printString("Hello World!'")
except:

traceback. print_exc()

status = 1

if ic:
Clean up
try:
i c.destroy()
except:
traceback. print_exc()
status =1

sys. exit(status)

Note that the overall code layout is the same as for the server: we use the same t ry and except blocks to deal with errors. The code in the
try block does the following:

1. As for the server, we initialize the Ice run time by calling I ce. i ni tial i ze.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

73 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Program+in+Python#TheServer-SidemainPrograminPython-application

74

Ice 3.6.4 Documentation

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno. Pri nt er Pr x; otherwise, if the
proxy denotes an interface of some other type, the call returns None.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Running Client and Server in Python

To run client and server, we first start the server in a separate window:

$ pyt hon Server. py

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ python dient.py
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Traceback (nobst recent call last):
File "Client.py", line 10, in ?
printer = Denvo. PrinterPrx.checkedCast (base)
File "Printer_ice.py", line 43, in checkedCast
return Deno. PrinterPrx.ice_checkedCast(proxy, '::Demo::Printer', fa
cet)
Connecti onRef usedExcepti on: | ce. Connecti onRef usedExcepti on:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be able to locate the Ice extension for Python. See the Ice for
Python installation instructions for more information.

See Also

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
The | ce. Appl i cati on Class

The Current Object

IceGrid

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Program+in+Python#TheServer-SidemainPrograminPython-application
https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Program+in+Python#TheServer-SidemainPrograminPython-application

Ice 3.6.4 Documentation

Writing an Ice Application with Ruby

This page shows how to create an Ice client application with Ruby.
On this page:

® Compiling a Slice Definition for Ruby
® Writing a Client in Ruby
® Running the Client in Ruby

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to generate Ruby proxies. You can compile the definition as

follows:

$ slice2rb Printer.ice

The sl i ce2r b compiler produces a single source file, Pri nt er. r b, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Writing a Client in Ruby

The client code, in Cl i ent . r b, is shown below in full:

75

Copyright 2017, ZeroC, Inc.

76

Ice 3.6.4 Documentation

Ruby

require 'Printer.rb
status = 0
ic =nil
begin
ic =lce::initialize(ARGY)
base = ic.stringToProxy("SinplePrinter:default -p 10000")
printer = Deno::PrinterPrx::checkedCast (base)
if not printer
rai se "Invalid proxy"
end

printer.printString("Hello World!'")
rescue

puts $!

puts $!.backtrace.join("\n")

status =1

end
if ic
Cl ean up
begin
i c.destroy()
rescue
puts $!
puts $!.backtrace.join("\n")
status =1
end
end

exi t (status)

The program begins with a r equi r e statement, which loads the Ruby code we generated from our Slice definition in the previous section. It
is not necessary for the client to explicitly load the | ce module because Pri nt er . r b does that for you.

The body of the main program contains a begi n block in which we place all the client code, followed by a r escue block. The r escue block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our begi n block goes through the following steps:

1. We initialize the Ice run time by calling I ce: ;i niti al i ze. (We pass ARGV to this call because the client may have command-line
arguments that are of interest to the run time; for this example, the client does not require any command-line arguments.) The call to
initializereturnsanlce:: Communi cat or reference, which is the main object in the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we

Copyright 2017, ZeroC, Inc.

77

Ice 3.6.4 Documentation

need to do a down-cast by calling Deno: : Pri nt er Prx: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x;
otherwise, if the proxy denotes an interface of some other type, the call returns ni | .

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.
Running the Client in Ruby

The server must be started before the client. Since Ice for Ruby does not support server-side behavior, we need to use a server from
another language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ruby dient.rb
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce::Connecti onRef usedExcepti on

{

error = 111

Note that, to successfully run the client, the Ruby interpreter must be able to locate the Ice extension for Ruby. See the Ice for Ruby
installation instructions for more information.

See Also

® Client-Side Slice-to-Ruby Mapping
® IceGrid

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Writing an Ice Application with Visual Basic

This page shows how to create an Ice application with Visual Basic.
On this page:

Visual Basic Development Process

Compiling a Slice Definition for Visual Basic
Writing and Compiling a Server in Visual Basic
Writing and Compiling a Client in Visual Basic
Running Client and Server in Visual Basic

Visual Basic Development Process

As of version 3.3, Ice no longer includes a separate compiler to create Visual Basic source code from Slice definitions. Instead, you need to
use the Slice-to-C# compiler sl i ce2cs to create C# source code and compile the generated C# source code with a C# compiler into a DLL
that contains the compiled generated code for your Slice definitions. Your Visual Basic application then links with this DLL and the Ice for
.NETDLL (I ce.dI).

This approach works not only with Visual Basic, but with any language that targets the .NET run time. However, ZeroC does not
provide support for languages other than C# and Visual Basic.

The following illustration demonstrates this development process:

Developing a Visual Basic application with Ice.

' Frinter.ice Slice-to-C# .| Printer.cs N .
Slice Developer Compiler » = C# Compiler
m w
¥
- Client.vh Visual Basic Clignt Stub & Skeleton
Client Developer L Compiler Executable DLL
RPC
Server.vh | C#++ lce Run-time Server Stub & Skeleton
Server Developer Library Executable DLL
w

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to generate proxies and skeletons.

definition as follows:

You can compile the

> nkdir generat ed
> slice2cs --output-dir generated Printer.ice

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined

inPrinter.ice.

78

Copyright 2017, ZeroC, Inc.

79

Ice 3.6.4 Documentation

We now need to compile this generated code into a DLL:

> csc /reference:lce.dll /1ib:%BCE HOVEW bin /t:library /out:Printer.dll
generated\Printer.cs

This creates a DLL called Pri nter. dl | that contains the code we generated from the Slice definitions.

Writing and Compiling a Server in Visual Basic

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Ser ver. vb:

Visual Basic

I mports System
I nports Deno

Public Cass Printerl
Inherits PrinterDisp_

Public Overl oads Overrides Sub printString(_
ByVal s As String,
ByVal current As Ilce.Current)
Consol e. Wi telLi ne(s)
End Sub

End d ass

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver . vb and is shown in full here:

Copyright 2017, ZeroC, Inc.

80

Ice 3.6.4 Documentation

Visual Basic

Modul e Server
Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0
Dmic As Ice. Comruni cator = Not hi ng
Try
ic =lce.Uil.initialize(args)
Di m adapter As |ce. bject Adapter = _
i c.creat eObj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nt er Adapt
er", "default -p 10000")
Dimobj As lce.Object = New Printer
adapt er. add(obj, ic.stringToldentity("SinplePrinter"))
adapt er. acti vate()
i c. wai t For Shut down()
Catch e As Exception
Consol e. Error. WiteLine(e)
status =1

End Try

If Not ic I's Nothing Then
' Clean up
Try

i c.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status =1
End Try
End | f
Envi ronnment . Exi t (st at us)
End Sub

End nodul e

Note the general structure of the code:

Copyright 2017, ZeroC, Inc.

81

Ice 3.6.4 Documentation

Visual Basic

Modul e Server
Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0
Dmic As Ice. Comruni cator = Not hi ng
Try

Server inplenentation here..

Catch e As Exception
Consol e. Error. WiteLine(e)
status =1

End Try

If Not ic I's Nothing Then
' Clean up
Try

i c.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status =1
End Try
End | f
Envi ronnment . Exi t (st at us)
End Sub

End nodul e

The body of Mai n contains a Try block in which we place all the server code, followed by a Cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our Try block contains the actual server code:

Copyright 2017, ZeroC, Inc.

82

Ice 3.6.4 Documentation

Visual Basic

ic =lce.Uil.initialize(args)
Di m adapter As |ce. bject Adapter = _
i c.creat eObj ect Adapt er Wt hEndpoi nt s("Si npl ePri nt er Adapt

er", "default -p 10000")

Dimobj As Ice.(Cbject = New Printerl

adapt er.add(obj, ic.stringToldentity("SinplePrinter"))

adapt er. acti vate()

i ¢c.wai t For Shut down()

The code goes through the following steps:

1.

We initialize the Ice run time by calling I ce. Util .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce: : Cormuni cat or reference, which is the main object in the Ice run time.

. We create an object adapter by calling cr eat eObj ect Adapt er W t hEndpoi nt s on the Conmuni cat or instance. The arguments

we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Pri nterl o

bject.

. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant

we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nter" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we

have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by

making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: ten lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

> vbc /reference:lce.dll /libpath: %4 CE HOVE% bin /reference: Printer.dl|
/out:server.exe Server.vb

This compiles our application code and links it with the Ice run time and the DLL we generated earlier. We assume that the | CE_HOVE enviro
nment variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set | CE_HOMVE t
o that path.)

Writing and Compiling a Client in Visual Basic

The client code, in C i ent . vb, looks very similar to the server. Here it is in full:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+C-Sharp#TheServer-SidemainMethodinC-Sharp-application

Ice 3.6.4 Documentation

Visual Basic

I mports System
I nports Deno

Modul e C i ent

Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0

Dmic As Ice. Comruni cator = Not hi ng

Try
ic =lce. Uil.initialize(args)
Dimobj As Ice.ObjectPrx = ic.stringToProxy("SinplePrinter:

default -p 10000")

Dmprinter As PrinterPrx = PrinterPrxHel per.checkedCast (ob

i)
If printer I's Nothing Then
Thr ow New ApplicationException("Invalid proxy")
End |f
printer.printString("Hello Wrld!")
Catch e As Exception
Consol e. Error. WiteLine(e)
status =1
End Try
If Not ic I's Nothing Then
' Clean up
Try
i c.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status =1
End Try
End | f
Envi ronnent . Exi t (st at us)
End Sub
End Modul e

Note that the overall code layout is the same as for the server: we use the same Try and Cat ch blocks to deal with errors. The code in the
Try block does the following:

1. As for the server, we initialize the Ice run time by calling I ce. Wil .initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Qbj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per . checkedCast . A checked cast sends a message to the server, effectively asking

83 Copyright 2017, ZeroC, Inc.

84

Ice 3.6.4 Documentation

"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

> vbc /reference:lce.dll /libpath: %4 CE HOVE% bin /reference: Printer.dl|
/out:client.exe Cient.vb

Running Client and Server in Visual Basic

To run client and server, we first start the server in a separate window:

> server. exe

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

> client.exe
>

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cation.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connecti onRef usedExcepti on
error =0
at lcelnternal . ProxyFactory. checkRetryAfterException(Local Exception
ex, Reference ref, Int32 cnt)
at | ce. vj ect PrxHel per Base. handl eExcepti on__(Obj ect Del _ del egate, Lo
cal Exception ex, Int32 cnt)
at |ce. Qbj ect PrxHel perBase.ice_isA(String id__, Dictionary 2 context
__, Bool ean explicitContext_)
at | ce. oj ectPrxHel perBase.ice_isA(String id_)
at Deno. Pri nt er PrxHel per. checkedCast (Obj ect Prx b)
at Cient.Main(String[] args)
Caused by: System Conponent Model . Wn32Exception: No connection could be
made because the target machine actively refused
it

Note that, to successfully run client and server, the VB run time must be able to locate the | ce. dl | library. (Under Windows, one way to
ensure this is to copy the library into the current directory. Please consult the documentation for your VB run time to see how it locates
libraries.)

See Also

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+C-Sharp#TheServer-SidemainMethodinC-Sharp-application

85

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
The | ce. Appl i cati on Class

The Current Object

IceGrid

Ice 3.6.4 Documentation

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/The+Server-Side+main+Method+in+C-Sharp#TheServer-SidemainMethodinC-Sharp-application

Ice 3.6.4 Documentation

The Slice Language

Here, we present the Slice language. Slice (Specification Language for Ice) is the fundamental abstraction mechanism for separating object
interfaces from their implementations. Slice establishes a contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation language, so it does not matter whether the client is written in
the same language as the server.

Even though Slice is an acronym, it is pronounced as a single syllable, like a slice of bread.

Slice definitions are compiled for a particular implementation language by a compiler. The compiler translates the language-independent
definitions into language-specific type definitions and APIs. These types and APIs are used by the developer to provide application
functionality and to interact with Ice. The translation algorithms for various implementation languages are known as language mappings.
Currently, Ice defines language mappings for C++, Java, C#, Python, Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a purely declarative language; there is no way to write
executable statements in Slice.

Slice definitions focus on object interfaces, the operations supported by those interfaces, and exceptions that may be raised by operations.
In addition, Slice offers features for object persistence. This requires quite a bit of supporting machinery; in particular, much of Slice is
concerned with the definition of data types. This is because data can be exchanged between client and server only if their types are defined
in Slice. You cannot exchange arbitrary C++ data between client and server because it would destroy the language independence of Ice.
However, you can always create a Slice type definition that corresponds to the C++ data you want to send, and then you can transmit the
Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice is based on C++ and Java, we focus on those areas where
Slice differs from C++ or Java or constrains the equivalent C++ or Java feature in some way. Slice features that are identical to C++ and
Java are mentioned mostly by example.

Topics

Slice Compilation

Slice Source Files

Lexical Rules

Modules

Basic Types

User-Defined Types
Constants and Literals
Interfaces, Operations, and Exceptions
Classes

Forward Declarations
Optional Data Members

Type IDs

Operations on Object

Local Types

Names and Scoping
Metadata

Serializable Objects
Deprecating Slice Definitions
Using the Slice Compilers
Slice Checksums

Generating Slice Documentation
Slice Keywords

Slice Metadata Directives
Slice for a Simple File System

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice Compilation

On this page:
® Compilation
¢ Single Development Environment for Client and Server
¢ Different Development Environments for Client and Server

Compilation

A Slice compiler produces source files that must be combined with application code to produce client and server executables.

The outcome of the development process is a client executable and a server executable. These executables can be deployed anywhere,
whether the target environments use the same or different operating systems and whether the executables are implemented using the same
or different languages. The only constraint is that the host machines must provide the necessary run-time environment, such as any required
dynamic libraries, and that connectivity can be established between them.

Single Development Environment for Client and Server

The figure below shows the situation when both client and server are developed in C++. The Slice compiler generates two files from a Slice
definition in a source file Pri nt er . i ce: a header file (Pri nt er. h) and a source file (Pri nt er. cpp)

Slice Printer.ice .| Slice-to-C++ Server
Developer m - Compiler Developer

K

Printer.cpp Server.cpp

Printer.h

\

|
Client | Client.cpp Co+ IICE
Developer -] Ru_n-hrne
Library
h 4 ¥ v
RFC

Client Executable W Server Executable

Development process if client and server share the same development environment.

® The Pri nt er. h header file contains definitions that correspond to the types used in the Slice definition. It is included in the source
code of both client and server to ensure that client and server agree about the types and interfaces used by the application.
® The Printer. cpp source file provides an API to the client for sending messages to remote objects. The client source code (Cl i en

87 Copyright 2017, ZeroC, Inc.

88

Ice 3.6.4 Documentation

t . cpp, written by the client developer) contains the client-side application logic. The generated source code and the client code are
compiled and linked into the client executable.

The Pri nt er. cpp source file also contains source code that provides an up-call interface from the Ice run time into the server code written

by the developer and provides the connection between the networking layer of Ice and the application code. The server implementation file (
Ser ver . cpp, written by the server developer) contains the server-side application logic (the object implementations, properly termed servan
ts). The generated source code and the implementation source code are compiled and linked into the server executable.

Both client and server also link with an Ice library that provides the necessary run-time support.

You are not limited to a single implementation of a client or server. For example, you can build multiple servers, each of which implements
the same interfaces but uses different implementations (for example, with different performance characteristics). Multiple such server
implementations can coexist in the same system. This arrangement provides one fundamental scalability mechanism in Ice: if you find that a
server process starts to bog down as the number of objects increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed over a number of processes on different machines. Each
server in the federation implements the same interfaces but hosts different object instances. (Of course, federated servers must somehow
ensure consistency of any databases they share across the federation.)

Ice also provides support for replicated servers. Replication permits multiple servers to each implement the same set of object instances.
This improves performance and scalability (because client load can be shared over a number of servers) as well as redundancy (because
each object is implemented in more than one server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are developed in different languages. For example, a client written in
Java cannot include a C++ header file.

This figure shows the situation when a client written in Java and the corresponding server is written in C++. In this case, the client and server
developers are completely independent, and each uses his or her own development environment and language mapping. The only link
between client and server developers is the Slice definition each one uses.

Slice

Developer

¥

Java Printer.ice C++

Slice-to-C++
Compiler

Server

Slice-to-Java
Compiler

Client

Developer Developer

Frinter.h

Frinter.cpp

Server.cpp

_/)

l

<]

Java lce Run-time
Library

-

Client Executable

Server Executable

C++ lce Run-time
Library

Copyright 2017, ZeroC, Inc.

89

Ice 3.6.4 Documentation

Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on the names of various Slice constructs. (These files are
collectively referred to as *. j ava in the above figure.)

See Also

® Using the Slice Compilers

Copyright 2017, ZeroC, Inc.

90

Ice 3.6.4 Documentation

Slice Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
On this page:

® File Naming
® File Format
® Preprocessing
® Detecting Ice Versions
® Detecting Slice Compilers
¢ Definition Order

File Naming

Files containing Slice definitions must end in a . i ce file extension, for example, Cl ock. i ce is a valid file name. Other file extensions are
rejected by the compilers.

For case-insensitive file systems (such as DOS), the file extension may be written as uppercase or lowercase, so Cl ock. | CE is legal. For
case-sensitive file systems (such as Unix), Cl ock. | CE is illegal. (The extension must be in lowercase.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab stops, form feeds, and newline characters to lay out your
code in any way you wish. (White space characters are token separators). Slice does not attach semantics to the layout of a definition. You
may wish to follow the style we have used for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a byte order marker (BOM) at the beginning of each file.
However, Slice identifiers are limited to ASCII letters and digits; non-ASCI!I letters can appear only in comments and string literals.

Preprocessing

Slice supports the same preprocessor directives as C++, so you can use directives such as #i ncl ude and macro definitions. However,
Slice permits #i ncl ude directives only at the beginning of a file, before any Slice definitions.

If you use #i ncl ude directives, it is a good idea to protect them with guards to prevent double inclusion of a file:

Slice

/Il File dock.ice
#i fndef _CLOCK | CE
#define CLOCK I CE

[/ #include directives here...
/] Definitions here...

#endi f _CLOCK_| CE

The following #pr agna directive offers a simpler way to achieve the same result:

Copyright 2017, ZeroC, Inc.

91

Ice 3.6.4 Documentation

Slice

/Il File dock.ice
#pragnma once

/'l #include directives here. ..
// Definitions here...

#i ncl ude directives permit a Slice definition to use types defined in a different source file. The Slice compilers parse all of the code in a
source file, including the code in subordinate #i ncl ude files. However, the compilers generate code only for the top-level file(s) nominated
on the command line. You must separately compile subordinate #i ncl ude files to obtain generated code for all the files that make up your
Slice definition.

Note that you should avoid #i ncl ude with double quotes:

Slice

#i nclude "C ock.ice" // Not recommended!

While double quotes will work, the directory in which the preprocessor tries to locate the file can vary depending on the operating system, so
the included file may not always be found where you expect it. Instead, use angle brackets (<>); you can control which directories are
searched for the file with the - | option of the Slice compiler.

Also note that, if you include a path separator in a #i ncl ude directive, you must use a forward slash:

Slice
#i nclude <SliceDefs/Cock.ice> // K

You cannot use a backslash in #i ncl ude directives:

Slice
#include <SliceDefs\Oock.ice> // Il egal

Detecting Ice Versions

As of Ice 3.5, the Slice compilers define the preprocessor macro __| CE_VERSI ON__ with a numeric representation of the Ice version. The
value of this macro is the same as the C++ macro | CE_| NT_VERSI ON. You can use this macro to make your Slice definitions
backward-compatible with older Ice releases, while still taking advantage of newer Ice features when possible. For example, the Slice
definition shown below makes use of custom enumerator values:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

#if defined(__ICE VERSION) & _ ICE VERSION _ >
enum Fruit { Apple, Pear = 3, Orange };

#el se

enum Fruit { Apple, Pear, Orange };

#endi f

030500

Although this example is intended to show how to use the | CE_VERSI ON macro, it also highlights a potential pitfall that you must be aware
of when trying to maintain backward compatibility: the two definitions of Fr ui t are not wire-compatible.

Detecting Slice Compilers

As of Ice 3.5, each Slice compiler defines its own macro so that you can customize your Slice code for certain language mappings. The
following macros are defined by their respective compilers:

_ SLICE2JAVA _

_ SLICE2JS

__SLICE2CPP__

_ SLICE2CS

_ SLICE2PY__

__SLICE2PHP__

_ SLICE2RB

__ SLI CE2FREEZE__

_ SLI CE2FREEZE]

~ SLICE2HTM.__

__ TRANSFORMDB__
DUMPDB

For example, .NET developers may elect to avoid the use of default values for structure members because the presence of default values
changes the C# mapping of the structure from st ruct to cl ass:

Slice

struct Record {
...
#if _ SLICE2CS
bool active;
#el se
bool active = true;
#endi f

H

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any order you prefer. However, identifiers must be declared
before they can be used.

See Also

® Using the Slice Compilers

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Lexical Rules

Slice's lexical rules are very similar to those of C++ and Java, except for some differences for identifiers.
On this page:

* Comments
® Keywords
® |dentifiers
® Case Sensitivity
® |dentifiers That Are Keywords
® Escaped ldentifiers
® Reserved |dentifiers

Comments

Slice definitions permit both the C and the C++ style of writing comments:

Slice

/*
* C-style comment.
*/

/'l C++-style comment extending to the end of this Iine.

Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For example, cl ass and di cti onary are keywords and must be
spelled as shown. There are two exceptions to this lowercase rule: Cbj ect and Local Obj ect are keywords and must be capitalized as
shown.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetic characters or digits. Underscores are also permitted in
identifiers with the following limitations:

® an identifier cannot begin or end with an underscore
® an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier get _account _nane is legal but not _account, account _, orget __account.

Slice identifiers are restricted to the ASCII range of alphabetic characters and cannot contain non-English letters, such as A. (Supporting
non-ASCI!I identifiers would make it very difficult to map Slice to target languages that lack support for this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, Ti meCf Day and TI MEOFDAY are considered the same
identifier within a naming scope. However, Slice enforces consistent capitalization. After you have introduced an identifier, you must
capitalize it consistently throughout; otherwise, the compiler will reject it as illegal. This rule exists to permit mappings of Slice to languages
that ignore case in identifiers as well as to languages that treat differently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation languages. For example, swi t ch is a perfectly good Slice

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

identifier but is a C++ and Java keyword. Each language mapping defines rules for dealing with such identifiers. The solution typically
involves using a prefix to map away from the keyword. For example, the Slice identifier swi t ch is mapped to _cpp_swi tch in C++and _s
wi t ch in Java.

The rules for dealing with keywords can result in hard-to-read source code. Identifiers such as nati ve, t hr ow, or export will clash with
C++ or Java keywords (or both). To make life easier for yourself and others, try to avoid Slice identifiers that are implementation language
keywords. Keep in mind that mappings for new languages may be added to Ice in the future. While it is not reasonable to expect you to
compile a list of all keywords in all popular programming languages, you should make an attempt to avoid at least common keywords. Slice
identifiers such as sel f, i nport, and whi | e are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with a backslash, for example:

Slice
struct dictionary { /1 Error!
/1
i
struct \dictionary { Il K
/1
i
struct \foo { /! Legal, sanme as "struct foo"
11
s

The backslash escapes the usual meaning of a keyword; in the preceding example, \ di ct i onary is treated as the identifier di cti onary.
The escape mechanism exists to permit keywords to be added to the Slice language over time with minimal disruption to existing
specifications: if a pre-existing specification happens to use a newly-introduced keyword, that specification can be fixed by simply
prepending a backslash to the new keyword. Note that, as a matter of style, you should avoid using Slice keywords as identifiers (even
though the backslash escapes allow you to do this).

Itis legal (though redundant) to precede an identifier that is not a keyword with a backslash — the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier | ce and all identifiers beginning with | ce (in any capitalization) for the Ice implementation. For example, if you
try to define a type named | cecr eam the Slice compiler will issue an error message.

You can suppress this behavior by using the - - i ce compiler option, which enables definition of identifiers beginning with | ce.
However, do not use this option unless you are compiling the Slice definitions for the Ice run time itself.

Slice identifiers ending in any of the suffixes Hel per, Hol der, Prx, and Pt r are also reserved. These endings are used by the various
language mappings and are reserved to prevent name clashes in the generated code.

See Also

® Slice Keywords

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Modules

On this page:

® Modules Reduce Clutter
Modules are Mandatory
Reopening Modules
Module Mapping
The Ice Module

Modules Reduce Clutter

A common problem in large systems is pollution of the global namespace: over time, as isolated systems are integrated, name clashes
become quite likely. Slice provides the npdul e construct to alleviate this problem:

Slice

nodul e ZeroC {
modul e Cient {
/1 Definitions here...
b
nmodul e Server {
/1 Definitions here...
b
1

A module can contain any legal Slice construct, including other module definitions. Using modules to group related definitions together
avoids polluting the global namespace and makes accidental name clashes quite unlikely. (You can use a well-known name, such as a
company or product name, as the name of the outermost module.)

Modules are Mandatory

Slice requires all definitions to be nested inside a module, that is, you cannot define anything other than a module at global scope. For
example, the following is illegal:

Slice

interface | { [l Error: only nodul es can appear at gl obal scope
/11

s

Definitions at global scope are prohibited because they cause problems with some implementation languages (such as Python, which does
not have a true global scope).

Throughout the Ice manual, you will occasionally see Slice definitions that are not nested inside a module. This is to keep the
examples short and free of clutter. Whenever you see such a definition, assume that it is nested in a module.

Reopening Modules

Modules can be reopened:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

nmodul e ZeroC {
/'l Definitions here...

i
/1 Possibly in a different source file:

nmodul e ZeroC { // OK, reopened nodul e
/1l More definitions here...

s

Reopened modules are useful for larger projects: they allow you to split the contents of a module over several different source files. The
advantage of doing this is that, when a developer makes a change to one part of the module, only files dependent on the changed part need
be recompiled (instead of having to recompile all files that use the module).

Module Mapping

Modules map to a corresponding scoping construct in each programming language. (For example, for C++ and C#, Slice modules map to
namespaces whereas, for Java, they map to packages.) This allows you to use an appropriate C++ usi ng or Java i nport declaration to
avoid excessively long identifiers in your source code.

The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls that cannot be expressed in Ice, are defined in the | ce modul
e. In other words, most of the Ice APl is actually expressed as Slice definitions. The advantage of doing this is that a single Slice definition is
sufficient to define the API for the Ice run time for all supported languages. The respective language mapping rules then determine the exact
shape of each Ice API for each implementation language.

We will incrementally explore the contents of the | ce module throughout this manual.

See Also

® Slice Source Files

96 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Basic Types

On this page:

® Built-In Basic Types
Integer Types
Floating-Point Types
Strings
Booleans
Bytes

Built-In Basic Types

Slice provides a number of built-in basic types, as shown in this table:

Type Range of Mapped Type Size of Mapped Type
bool falseortrue 1bit

byte -128-127 or 0-255 & 8 bits

short 21545215 3 16 bits

int 23L4g231 3 32 bits

| ong 26345263 1 64 bits

fl oat IEEE single-precision 32 bits

doubl e IEEE double-precision 64 bits

string All Unicode characters, excluding Variable-length

the character with all bits zero.

@ The range depends on whether byt e maps to a signed or an unsigned type.

All the basic types (except byt e) are subject to changes in representation as they are transmitted between clients and servers. For example,
al ong value is byte-swapped when sent from a little-endian to a big-endian machine. Similarly, strings undergo translation in representation
if they are sent, for example, from an EBCDIC to an ASCII implementation, and the characters of a string may also change in size. (Not all
architectures use 8-bit characters). However, these changes are transparent to the programmer and do exactly what is required.

Integer Types

Slice provides integer types short, i nt, and | ong, with 16-bit, 32-bit, and 64-bit ranges, respectively. Note that, on some architectures,
any of these types may be mapped to a native type that is wider. Also note that no unsigned types are provided. (This choice was made
because unsigned types are difficult to map into languages without native unsigned types, such as Java. In addition, the unsigned integers
add little value to a language. (See [1] for a good treatment of the topic.)

Floating-Point Types

These types follow the IEEE specification for single- and double-precision floating-point representation [2]. If an implementation cannot
support IEEE format floating-point values, the Ice run time converts values into the native floating-point representation (possibly at a loss of
precision or even magnitude, depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear inside a string is the zero character.

This decision was made as a concession to C++, with which it becomes impossibly difficult to manipulate strings with embedded
zero characters using standard library routines, such as strl en orstrcat.

The Slice data model does not have the concept of a null string (in the sense of a C++ null pointer). This decision was made because null
strings are difficult to map to languages without direct support for this concept (such as Python). Do not design interfaces that depend on a

Copyright 2017, ZeroC, Inc.

98

Ice 3.6.4 Documentation

null string to indicate "not there" semantics. If you need the notion of an optional string, use a class, a sequence of strings, or use an empty
string to represent the idea of a null string. (Of course, the latter assumes that the empty string is not otherwise used as a legitimate string
value by your application.)

Booleans

Boolean values can have only the values f al se and t r ue. Language mappings use the corresponding native boolean type if one is
available.

Bytes

The Slice type byt e is an (at least) 8-bit type that is guaranteed not to undergo any changes in representation as it is transmitted between
address spaces. This guarantee permits exchange of binary data such that it is not tampered with in transit. All other Slice types are subject
to changes in representation during transmission.

See Also

® Sequences
® Classes

References

1. Lakos, J. 1996. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley.
2. Institute of Electrical and Electronics Engineers. 1985. IEEE 754-1985 Standard for Binary Floating-Point Arithmetic. Piscataway,
NJ: Institute of Electrical and Electronic Engineers.

Copyright 2017, ZeroC, Inc.

http://amzn.com/0201633620

99

Ice 3.6.4 Documentation

User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define complex types: enumerations, structures, sequences, and
dictionaries.

Enumerations
Structures
Sequences
Dictionaries

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Enumerations

Enumeration Syntax and Semantics

A Slice enumerated type definition looks identical to C++:

Slice
enum Fruit { Apple, Pear, Orange };

This definition introduces a type named Fr ui t that becomes a new type in its own right. Slice guarantees that the values of enumerators
increase from left to right, so Appl e compares less than Pear in every language mapping. By default, the first enumerator has a value of
zero, with sequentially increasing values for subsequent enumerators.

Slice enumerator symbols enter the enclosing namespace scope, so the following is illegal:

Slice

enum Fruit { Apple, Pear, Orange };
enum Conput er Brands { Apple, IBM Sun, HP }; /'l Appl e redefined

The example below shows how to refer to an enumerator from a different scope:

Slice

nodul e M {

enum Col or { red, green, blue };
i
nodul e N {

struct Pixel {

M:Color ¢ = M:Dblue;

b

s

Slice does not permit empty enumerations.

Custom Enumerator Values

Slice also permits you to assign custom values to enumerators:

Slice

const int PearValue = 7,
enum Fruit { Apple = 0, Pear = PearValue, O ange };

Custom values must be unique and non-negative, and may refer to Slice constants of integer types. If no custom value is specified for an
enumerator, its value is one greater than the enumerator that immediately precedes it. In the example above, Or ange has the value 8.

The maximum value for an enumerator value is the same as the maximum value fori nt , 231 - 1.

100 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice does not require custom enumerator values to be declared in increasing order:

Slice

enum Fruit { Apple = 5, Pear = 3, Orange = 1 }; /1 Legal

Note however that when there is an inconsistency between the declaration order and the numerical order of the enumerators, the behavior of
comparison operations may vary between language mappings.

For an application that is still using version 1.0 of the Ice encoding, changing the definition of an enumerated type may break
backward compatibility with existing applications. For more information, please refer to the encoding rules for enumerated types.

See Also

Structures
Sequences
Dictionaries

[]
[]
[]
® Constants and Literals

101 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Structures

Slice supports structures containing one or more named members of arbitrary type, including user-defined complex types. For example:

Slice

struct TineO Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

H

As in C++, this definition introduces a new type called Ti meCf Day. Structure definitions form a namespace, so the names of the structure
members need to be unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can appear inside a structure. It is impossible to, for example, define
a structure inside a structure:

Slice

struct TwoPoints {

struct Point { /1 111legal!
short x;
short v;

}

Poi nt coordl;

Poi nt coord2;

H

This rule applies to Slice in general: type definitions cannot be nested (except for modules, which do support nesting). The reason for this
rule is that nested type definitions can be difficult to implement for some target languages and, even if implementable, greatly complicate the
scope resolution rules. For a specification language, such as Slice, nested type definitions are unnecessary — you can always write the
above definitions as follows (which is stylistically cleaner as well):

Slice
struct Point {
short x;
short v;
s
struct TwoPoi nts { /1 Legal (and cl eaner!)
Poi nt coordi;
Poi nt coord?2;
b

You can specify a default value for a data member that has one of the following types:

102 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

struct Location {
string nane;

Poi nt pt;
bool display = true;
string source = "GPS";

b

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

103

See Also

Modules

Basic Types
Enumerations
Sequences
Dictionaries
Constants and Literals

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Floating-PointTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Strings
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Booleans

Ice 3.6.4 Documentation

Sequences

On this page:

® Sequence Syntax and Semantics
® Using Sequences for Optional Values

Sequence Syntax and Semantics

Sequences are variable-length collections of elements:

Slice

sequence<Fruit> FruitPlatter;

A sequence can be empty—that is, it can contain no elements, or it can hold any number of elements up to the memory limits of your
platform.

Sequences can contain elements that are themselves sequences. This arrangement allows you to create lists of lists:

Slice

sequence<Frui t Pl atter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, sets, bags, or trees. (It is up to the application to decide
whether or not order is important; by discarding order, a sequence serves as a set or bag.)

Using Sequences for Optional Values

Using a sequence to model an optional value is unnecessary with the introduction of optional data members and optional
parameters in Ice 3.5.

One particular use of sequences has become idiomatic, namely, the use of a sequence to indicate an optional
value. For example, we might have a Par t structure that records the details of the parts that go into a car. The
structure could record things such as the name of the part, a description, weight, price, and other details. Spare
parts commonly have a serial number, which we can model as a | ong value. However, some parts, such as
simple screws, often do not have a serial number, so what are we supposed to put into the serial number field of
a screw? There are a number of options for dealing with this situation:
® Use asentinel value, such as zero, to indicate the "no serial number" condition.
This approach is workable, provided that a sentinel value is actually available. While it may seem unlikely that anyone would use a

serial number of zero for a part, it is not impossible. And, for other values, such as a temperature value, all values in the range of
their type can be legal, so no sentinel value is available.

® Change the type of the serial number from | ong to stri ng.
Strings come with their own built-in sentinel value, namely the empty string, so we can use an empty string to indicate the "no serial
number" case. This is workable but not ideal: we should not have to change the natural data type of something to st ri ng just so we

get a sentinel value.

® Add an indicator as to whether the contents of the serial number are valid:

104 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Operations#Operations-optional
https://doc.zeroc.com/display/Ice36/Operations#Operations-optional

105

Ice 3.6.4 Documentation

Slice
struct Part {
string nane;
string description;
/11
bool seriallsvalid; // true if part has serial nunber

| ong seri al Nurber ;
s

This is guaranteed to get you into trouble eventually: sooner or later, some programmer will forget to check whether the serial
number is valid before using it and create havoc.

Use a sequence to model the optional field.
This technique uses the following convention:

Slice

sequence<l| ong> Seri al Opt;

struct Part ({

string name;
string description;
/11

Serial Opt serial Nunber; // optional: zero or one el enent

H

By convention, the Opt suffix is used to indicate that the sequence is used to model an optional value. If the sequence is empty, the
value is obviously not there; if it contains a single element, that element is the value. The obvious drawback of this scheme is that
someone could put more than one element into the sequence. This could be rectified by adding a special-purpose Slice construct for
optional values. However, optional values are not used frequently enough to justify the complexity of adding a dedicated language
feature. (As we will see in Classes, you can also use class hierarchies to model optional fields.)

See Also

Enumerations
Structures
Dictionaries
Constants and Literals
Classes

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Dictionaries

On this page:

¢ Dictionary Syntax and Semantics
® Allowable Types for Dictionary Keys and Values

Dictionary Syntax and Semantics

A dictionary is a mapping from a key type to a value type.

For example:

Slice

struct Enpl oyee {
| ong nunber ;
string firstNane;
string | ast Nane;

s

di ctionary<l ong, Enpl oyee> Enpl oyeeMap;

This definition creates a dictionary named Enpl oyeeMap that maps from an employee number to a structure containing the details for an
employee. Whether or not the key type (the employee number, of type | ong in this example) is also part of the value type (the Enpl oyee str
ucture in this example) is up to you — as far as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data structure with non-integral key type. Even though a sequence of
structures containing key-value pairs could be used to model the same thing, a dictionary is more appropriate:

® A dictionary clearly signals the intent of the designer, namely, to provide a mapping from a domain of values to a range of values. (A
sequence of structures of key-value pairs does not signal that same intent as clearly.)

® At the programming language level, sequences are implemented as vectors (or possibly lists), that is, they are not well suited to
model sparsely populated domains and require a linear search to locate an element with a particular value. On the other hand,
dictionaries are implemented as a data structure (typically a hash table or red-black tree) that supports efficient searching in O(log n)
average time or better.

Allowable Types for Dictionary Keys and Values

The key type of a dictionary need not be an integral type. For example, we could use the following definition to translate the names of the
days of the week:

Slice

di ctionary<string, string> WekdaysEngli shToGer nan;

The server implementation would take care of initializing this map with the key-value pairs Monday- Mont ag, Tuesday- Di enst ag, and so
on.

The value type of a dictionary can be any Slice type. However, the key type of a dictionary is limited to one of the following types:

® Integral types (byt e, short,int, | ong, bool)
® string

106 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Strings

Ice 3.6.4 Documentation

® enum
® Structures containing only data members of legal key types

Other complex types, such as dictionaries, and floating-point types (f | oat and doubl e) cannot be used as the key type. Complex types are
disallowed because they complicate the language mappings for dictionaries, and floating-point types are disallowed because
representational changes of values as they cross machine boundaries can lead to ill-defined semantics for equality.

See Also

Basic Types
Enumerations
Structures

Sequences

Constants and Literals

107 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Constants and Literals

On this page:

Allowable Types for Constants
Boolean constants

Integer literals

Floating-point literals

String literals

Constant Expressions

Allowable Types for Constants

Slice allows you to define constants for the following types:

An integral type (bool , byt e, short,int, | ong)
A floating point type (f | oat or doubl e)

string

enum

Here are a few examples:

Slice
const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0xO0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const doubl e Pl = 3.1416;
enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).

Boolean constants

Boolean constants can only be initialized with the keywords f al se and t r ue. (You cannot use 0 and 1 to represent f al se and t r ue.)

Integer literals

Integer literals can be specified in decimal, octal, or hexadecimal notation.

For example:

Slice
const byte TheAnswer = 42;
const byte TheAnswerlnCctal = 052;
const byte TheAnswerl nHex = O0x2A; /1 or 0x2a

Be aware that, if you interpret byt e as a number instead of a bit pattern, you may get different results in different languages. For example,
for C++, byt e maps to unsi gned char whereas, for Java, byt e maps to byt e, which is a signed type.

108 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Floating-PointTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Strings

Ice 3.6.4 Documentation

Note that suffixes to indicate long and unsigned constants (I , L, u, U, used by C++) are illegal:

Slice

const | ong Wong = Ou; /1 Syntax error
const | ong WongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as shown in the Built-In Basic Types table; otherwise the
compiler will issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an | or L suffix to indicate an extended floating-point constant; however, f
and F are legal (but are ignored).

Here are a few examples:

Slice
const float Pl = -3.14f; /1 Integer & fraction, with suffix
const float P2 = +3. 1le-3; /1 Integer, fraction, and exponent
const float P3 = .1; /1l Fraction part only
const float P4 = 1.; /1 Integer part only
const float P5 = .9E5; /1 Fraction part and exponent
const float P6 = 5e2; /1l Integer part and exponent

Floating-point literals must be within the range of the constant type (f | oat or doubl e); otherwise, the compiler will issue a diagnostic.

String literals

String literals support the same escape sequences as C++.

Here are some examples:

109 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Built-InBasicTypes

Ice 3.6.4 Documentation

Slice
const string AnOrdinaryString = "Hello World!";

const string Doubl eQuote = At

const string TwoSingl eQuotes = "'"\'"; /1" and \' are K
const string Newine = "\n";

const string CarriageReturn = "\r";

const string Horizontal Tab = "\t

const string Vertical Tab = "\v";

const string FornfFeed = "\

const string Alert = "\a";

const string Backspace = "\'b";

const string QuestionhMark = "\

const string Backslash = "\

const string Cctal Escape = "\ 007"; /] Sanme as \a
const string HexEscape = "\ x07"; /1 Ditto
const string Universall = "\ u0041"; /1l Same as A
const string Universal2 = "\U00000041"; /1 Ditto

Note that Slice has no concept of a null string:

Slice
0; /1 11legal!

const string Null String

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for
this decision is that null strings do not exist in many programming languages.

Many languages other than C and C++ use a byte array as the internal string representation. Null strings do not exist (and would
be very difficult to map) in such languages.

Constant Expressions

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of
the existing constant must be compatible with the type of the constant being defined.

Consider the examples below:

Slice
const int SIZE = 500;
const int DEFAULT SIZE = SIZE, // K
const short SHORT SIZE = SIZE;, // K

const byte BYTE SIZE = SI ZE; /1 ERROR

The DEFAULT_SI ZE constant is legal because it has the same type as Sl ZE, and SHORT_SI ZE is legal because the value of SI ZE (500) is

110 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

within the range of the Slice short type. However, BYTE_SI ZE is illegal because the value of S| ZE is outside the range of the byt e type.

See Also

Enumerations
Structures
Sequences

[]
[]
[]
® Dictionaries

111 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

Slice

struct Ti nmeOf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

b

interface C ock {

Ti meOf Day get Ti me() ;

void setTime(Ti meOfDay tine);
};

This definition defines an interface type called O ock. The interface supports two operations: get Ti me and set Ti ne. Clients access an
object supporting the G ock interface by invoking an operation on the proxy for the object: to read the current time, the client invokes the ge
t Ti me operation; to set the current time, the client invokes the set Ti ne operation, passing an argument of type Ti meOf Day.

Invoking an operation on a proxy instructs the Ice run time to send a message to the target object. The target object can be in another
address space or can be collocated (in the same process) as the caller — the location of the target object is transparent to the client. If the
target object is in another (possibly remote) address space, the Ice run time invokes the operation via a remote procedure call; if the target is
collocated with the client, the Ice run time bypasses the network stack altogether to deliver the request more efficiently.

You can think of an interface definition as the equivalent of the public part of a C++ class definition or as the equivalent of a Java interface,
and of operation definitions as (virtual) member functions. Note that nothing but operation definitions are allowed to appear inside an
interface definition. In particular, you cannot define a type, an exception, or a data member inside an interface. This does not mean that your
object implementation cannot contain state — it can, but how that state is implemented (in the form of data members or otherwise) is hidden
from the client and, therefore, need not appear in the object's interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class type). Of course, you can create multiple Ice objects that have the
same type; to draw the analogy with C++, a Slice interface corresponds to a C++ class definition, whereas an Ice object corresponds to a
C++ class instance (but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets.

A Slice interface defines the smallest grain of distribution in Ice: each Ice object has a unique identity (encapsulated in its proxy) that
distinguishes it from all other Ice objects; for communication to take place, you must invoke operations on an object's proxy. There is no
other notion of an addressable entity in Ice. You cannot, for example, instantiate a Slice structure and have clients manipulate that structure
remotely. To make the structure accessible, you must create an interface that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence on the overall architecture. Distribution boundaries must follow
interface (or class) boundaries; you can spread the implementation of interfaces over multiple address spaces (and you can implement
multiple interfaces in the same address space), but you cannot implement parts of interfaces in different address spaces.

Topics

Operations

User Exceptions
Run-Time Exceptions
Proxies for Ice Objects
Interface Inheritance

See Also

® Classes
® Versioning

112 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Operations

On this page:

Parameters and Return Values
Optional Parameters and Return Values
Style of Operation Definition
Overloading Operations

Idempotent Operations

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter definitions. For example, in the Cl ock interface, the get Ti e
operation has a return type of Ti meCf Day and the set Ti e operation has a return type of voi d. You must use voi d to indicate that an
operation returns no value — there is no default return type for Slice operations.

An operation can have one or more input parameters. For example, set Ti me accepts a single input parameter of type Ti meCf Day called t
i me. Of course, you can use multiple input parameters:

Slice

i nterface G rcadi anRhyt hm {
voi d set Sl eepPeri od(Ti meOf Day startTinme, TinmeODay stopTine);
11

b

Note that the parameter name (as for Java) is mandatory. You cannot omit the parameter name, so the following is in error:

Slice

i nterface Circadi anRhyt hm {
voi d set Sl eepPeri od(Ti meOf Day, TinmeOiDay); // Error!
/11

H

By default, parameters are sent from the client to the server, that is, they are input parameters. To pass a value from the server to the client,
you can use an output parameter, indicated by the out keyword. For example, an alternative way to define the get Ti e operation in the Cl
ock interface would be:

Slice

void getTinme(out TinmeOrDay tine);

This achieves the same thing but uses an output parameter instead of the return value. As with input parameters, you can use multiple
output parameters:

113 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

i nterface G rcadi anRhyt hm {
voi d set Sl eepPeriod(Ti reO Day startTinme, TinmeODay stopTine);
voi d get Sl eepPeri od(out TineOfDay startTi ne,

out TimeCf Day stopTine);
11

b

If you have both input and output parameters for an operation, the output parameters must follow the input parameters:

Slice

voi d changeSl| eepPeri od(Ti meOX Day startTi nme,
Ti reXX Day st opTi ne, Il K

out TimeOf Day prevStartTinme,
out TinmeCf Day prevStopTine);

voi d changeS| eepPeri od(out TineOfDay prevStartTine, out TinmeO Day prevS
topTime, // Error

Ti meOf Day startTinme,
Ti meOf Day stopTine);

Slice does not support parameters that are both input and output parameters (call by reference). The reason is that, for remote calls,
reference parameters do not result in the same savings that one can obtain for call by reference in programming languages. (Data still needs
to be copied in both directions and any gains in marshaling efficiency are negligible.) Also, reference (or input-output) parameters result in
more complex language mappings, with concomitant increases in code size.

Optional Parameters and Return Values

As of Ice 3.5, an operation's return value and parameters may be declared as optional to indicate that a program can leave their values
unset. Parameters not declared as optional are known as required parameters; a program must supply legal values for all required
parameters. In the discussion below, we use parameter to refer to input parameters, output parameters, and return values.

A unique, non-negative integer tag must be assigned to each optional parameter:

Slice

optional (3) bool example(optional (2) string name, out optional (1) int
val ue) ;

The scope of a tag is limited to its operation and has no effect on other operations.

An operation's signature can include any combination of required and optional parameters, but output parameters still must follow input
parameters:

114 Copyright 2017, ZeroC, Inc.

115

Ice 3.6.4 Documentation

Slice

bool exanpl e(string nane, optional (3) string referrer, out optional (1)
string pronpo, out int id);

Language mappings specify an API for passing optional parameters and testing whether a parameter is present. Refer to the language
mapping sections for more details on the optional parameter API.

A well-behaved program must test for the presence of an optional parameter and not assume that it is always set. Dereferencing
an unset optional parameter causes a run-time error.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition you use in Slice: Slice return types map to programming
language return types, and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value from the operation instead of using an out-parameter. This
style maps naturally into all programming languages. Note that, if you use an out-parameter instead, you impose a different API style on the
client: most programming languages permit the return value of a function to be ignored whereas it is typically not possible to ignore an output
parameter.

For operations that return multiple values, it is common to return all values as out-parameters and to use a return type of voi d. However, the
rule is not all that clear-cut because operations with multiple output values can have one patrticular value that is considered more "important"
than the remainder. A common example of this is an iterator operation that returns items from a collection one-by-one:

Slice

bool next (out RecordType r);

The next operation returns two values: the record that was retrieved and a Boolean to indicate the end-of-collection condition. (If the return
value is f al se, the end of the collection has been reached and the parameter r has an undefined value.) This style of definition can be
useful because it naturally fits into the way programmers write control structures. For example:

whil e (next(record))
!/l Process record...

if (next(record))
/!l Got a valid record...

Overloading Operations

Slice does not support any form of overloading of operations. For example:

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

i nterface G rcadi anRhyt hm {
void nodi fy(Ti meODay startTinme, TinmeODay endTine);
voi d nodi fy(Ti meOf Day startTinme, [l Error
Ti meCf Day endTi e,
out tineCfDay prevStartTine,
out TinmeCf Day prevEndTi ne);

b

Operations in the same interface must have different names, regardless of what type and number of parameters they have. This restriction
exists because overloaded functions cannot sensibly be mapped to languages without built-in support for overloading.

Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable to humans.

Idempotent Operations

Some operations, such as get Ti e in the Cl ock interface, do not modify the state of the object they operate on. They are the conceptual
equivalent of C++ const member functions. Similary, set Ti me does modify the state of the object, but is idempotent. You can indicate this
in Slice as follows:

Slice

interface C ock {

i denmpot ent Ti meOf Day get Ti me();

i denpotent void setTinme(Ti mreOfDay tine);
i

This marks the get Ti me and set Ti e operations as idempotent. An operation is idempotent if two successive invocations of the operation
have the same effect as a single invocation. For example, x = 1; is an idempotent operation because it does not matter whether it is
executed once or twice — either way, x ends up with the value 1. On the other hand, x += 1; is not an idempotent operation because
executing it twice results in a different value for x than executing it once. Obviously, any read-only operation is idempotent.

The i denpot ent keyword is useful because it allows the Ice run time to be more aggressive when performing automatic retries to recover
from errors. Specifically, Ice guarantees at-most-once semantics for operation invocations:

® For normal (not idempotent) operations, the Ice run time has to be conservative about how it deals with errors. For example, if a
client sends an operation invocation to a server and then loses connectivity, there is no way for the client-side run time to find out
whether the request it sent actually made it to the server. This means that the run time cannot attempt to recover from the error by
re-establishing a connection and sending the request a second time because that could cause the operation to be invoked a second
time and violate at-most-once semantics; the run time has no option but to report the error to the application.

® Fori denpot ent operations, on the other hand, the client-side run time can attempt to re-establish a connection to the server and
safely send the failed request a second time. If the server can be reached on the second attempt, everything is fine and the
application never notices the (temporary) failure. Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration parameter.)

See Also
® Interfaces, Operations, and Exceptions

® User Exceptions
® Run-Time Exceptions

116 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Proxies for Ice Objects
Interface Inheritance
Automatic Retries
Optional Values

117 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

User Exceptions

On this page:

® User Exception Syntax and Semantics
® Default Values for User Exception Members
® Declaring User Exceptions in Operations
® Restrictions for User Exceptions

® User Exception Inheritance

User Exception Syntax and Semantics

Looking at the set Ti ne operation in the Cl ock interface, we find a potential problem: given that the Ti meCf Day structure uses short as
the type of each field, what will happen if a client invokes the set Ti me operation and passes a Ti mreCf Day value with meaningless field
values, such as - 199 for the minute field, or 42 for the hour? Obviously, it would be nice to provide some indication to the caller that this is
meaningless. Slice allows you to define user exceptions to indicate error conditions to the client. For example:

Slice

exception Error {}; // Enpty exceptions are | egal

exception RangeError {
Ti ref Day errorTine;
Ti mef Day mi nTi rre;
Ti mef Day maxTi re;
b

A user exception is much like a structure in that it contains a number of data members. However, unlike structures, exceptions can have zero
data members, that is, be empty. Like classes, user exceptions support inheritance and may include optional data members.

Default Values for User Exception Members

You can specify a default value for an exception data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

excepti on RangeError {
Ti meOf Day errorTine;
Ti mef Day mi nTi ne;
Ti mref Day maxTi ne;
string reason = "out of range";

b

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

118 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Floating-PointTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Strings
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Booleans

Ice 3.6.4 Documentation

Declaring User Exceptions in Operations

Exceptions allow you to return an arbitrary amount of error information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions that may be returned to the client:

Slice

interface C ock {
i denmpot ent Ti meOf Day get Ti me();
i denpotent void setTi me(Ti meOf Day tine)
throws RangeError, Error;

b

This definition indicates that the set Ti me operation may throw either a RangeEr r or or an Er r or user exception (and no other type of
exception). If the client receives a RangeEr r or exception, the exception contains the Ti meCf Day value that was passed to set Ti ne and
caused the error (in the er r or Ti me member), as well as the minimum and maximum time values that can be used (in the m nTi me and nma
xTi me members). If set Ti me failed because of an error not caused by an illegal parameter value, it throws Er r or . Obviously, because Er r
or does not have data members, the client will have no idea what exactly it was that went wrong — it simply knows that the operation did not
work.

An operation can throw only those user exceptions that are listed in its exception specification. If, at run time, the implementation of an
operation throws an exception that is not listed in its exception specification, the client receives a run-time exception) to indicate that the
operation did something illegal. To indicate that an operation does not throw any user exception, simply omit the exception specification.
(There is no empty exception specification in Slice.)

Restrictions for User Exceptions

Exceptions are not first-class data types and first-class data types are not exceptions:

You cannot pass an exception as a parameter value.

You cannot use an exception as the type of a data member.

You cannot use an exception as the element type of a sequence.

You cannot use an exception as the key or value type of a dictionary.

You cannot throw a value of non-exception type (such as a value of type i nt or stri ng).

The reason for these restrictions is that some implementation languages use a specific and separate type for exceptions (in the same way as
Slice does). For such languages, it would be difficult to map exceptions if they could be used as an ordinary data type. (C++ is somewhat
unusual among programming languages by allowing arbitrary types to be used as exceptions.)

User Exception Inheritance

Exceptions support inheritance. For example:

119 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
exception ErrorBase {
string reason;
i
enum RTError {
Di vi deByZero, NegativeRoot, Illegal Null /* ... */

b

exception RuntimeError extends ErrorBase {
RTError err;

H
enum LError { Val ueQut & Range, Val ueslnconsistent, /* ... */ };

exception Logi cError extends ErrorBase {
LError err,

H

exception RangeError extends Logi cError {
Ti mreOf Day errorTine;
Ti meOf Day mi nTi ne;
Ti meX Day maxTi Ire;

i

These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause of the error.

® Derived from Er r or Base are Runt i neEr r or and Logi cError. Each of these exceptions contains an enumerated value that
further categorizes the error.

® Finally, RangeEr r or is derived from Logi cEr r or and reports the details of the specific error.

Setting up exception hierarchies such as this not only helps to create a more readable specification because errors are categorized, but also
can be used at the language level to good advantage. For example, the Slice C++ mapping preserves the exception hierarchy so you can
catch exceptions generically as a base exception, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy, it is not clear whether, at run time, the application will only throw most derived exceptions, such as Rang
eError, orifit will also throw base exceptions, such as Logi cError, Runti meError, and Err or Base. If you want to indicate that a base
exception, interface, or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific exception type, at run time, the implementation of the operation
may also throw more derived exceptions. For example:

120 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

exception Base {
11

H

exception Derived extends Base {
11

b

i nterface Exanpl e {
voi d op() throws Base; /1 May throw Base or Derived

H

In this example, op may throw a Base or a Der i ved exception, that is, any exception that is compatible with the exception types listed in the
exception specification can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be added to an existing hierarchy. Assume that we initially construct
clients and server with the following definitions:

Slice

exception Error {
/1

H

interface Application {
voi d doSonet hing() throws Error;

H

Also assume that a large number of clients are deployed in field, that is, when you upgrade the system, you cannot easily upgrade all the
clients. As the application evolves, a new exception is added to the system and the server is redeployed with the new definition:

121 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

exception Error {
11

H

exception Fatal ApplicationError extends Error {
Il

b

interface Application {
voi d doSonet hing() throws Error

H

This raises the question of what should happen if the server throws a Fat al Appl i cati onError from doSonet hi ng. The answer
depends whether the client was built using the old or the updated definition:

® |f the client was built using the same definition as the server, it simply receives a Fat al Appl i cati onError.

® |f the client was built with the original definition, that client has no knowledge that Fat al Appl i cati onError even exists. In this
case, the Ice run time automatically slices the exception to the most-derived type that is understood by the receiver (Er r or, in this
case) and discards the information that is specific to the derived part of the exception. (This is exactly analogous to catching C++
exceptions by value — the exception is sliced to the type used in the cat ch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be difficult to map into many programming languages.)

See Also

Constants and Literals
Operations

Run-Time Exceptions
Proxies for Ice Objects
Interface Inheritance
Optional Data Members

122 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Run-Time Exceptions

In addition to any user exceptions that are listed in an operation's exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-related run-time errors. For example, if a networking error
interrupts communication between client and server, the client is informed of this by a run-time exception, such as Connect Ti neout Excep

tion or Socket Excepti on.

The exception specification of an operation must not list any run-time exceptions. (It is understood that all operations can raise run-time
exceptions and you are not allowed to restate that.)

On this page:

® Inheritance Hierarchy for Exceptions
® Local Versus Remote Exceptions
® Request Failed Exceptions
® ObjectNotExistException
® FacetNotExistException
® OperationNotExistException
® Unknown Exceptions
® UnknownUserException
® UnknownLocalException
® UnknownException

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, as shown below:

Exception

LocalException UserException

) N

Specific Run-Time
Exceplions...

Specific User Exceplions...

Inheritance structure for exceptions.

| ce: : Excepti on is at the root of the inheritance hierarchy. Derived from that are the (abstract) types | ce: : Local Excepti onand | ce: :
User Except i on. In turn, all run-time exceptions are derived from | ce: : Local Except i on, and all user exceptions are derived from | ce:
: User Excepti on.

Ice run-time exceptions are all defined in Slice as | ocal excepti ons. Local exception is a synonym for Ice run-time exception.

This figures shows the complete hierarchy of the Ice run-time exceptions:

123 Copyright 2017, ZeroC, Inc.

—
LocalException o S —

UnknownException

F

UnknownlLocalException
UnknownUserException

\‘\ SocketException |

Ice 3.6.4 Documentation

Exception L

T~ SyscallException

A

A"

ConnectionFailedException
ConnectionLostException

Y

ConnectionRefusedException

ProtocolException L

~—
.

A

InitializationException
lllegalldentityException
IdentityParseException
PlugininitializationException
DNSException
ProxyParseException
NoEndpointException
ObjectAdapterDeactivatedException
ObjectAdapterldinUseException
VersionMismatchException
CommunicatorDestroyedException
EndpointParseException
EndpointSelectionTypeParseException
PlugininitializationException
AlreadyRegisteredException
MotRegisteredException
TwowayOnlyException
CloneNotimplementedException
SecurityException
FixedProxyException
FeatureMotSupportedException

BadMagicException
UnsupportedProtocolException
UnsupportedEncodingException
UnknownMessageException
ConnectionNotValidatedException
UnknownRequestidException
UnknownReplyStatusException
CloseConnectionException
ConnectionManuallyClosedException
AbortBatchRequestException
lllegalMessageSizeException
CompressionException
DatagramLimitException

Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

| FileException

1]

ObjectNotExistException
OperationMNotExistException
FaceNotExistException

EmeoutE xception

ConnectTimeoutException
ConnectionTimeoutException
CloseTimeoutException
Invocation TimeoutException

~_

MarshalException
F Y

ProxyUnmarshalException
UnmarshalQutOfBoundsException
lllegalindirectionException
MemoryLimitException
EncapsulationException
MNoValueFactoryException
StringConversionException

Note that Ice run-time exception hierarchy groups several exceptions into a single box to save space (which, strictly, is incorrect UML
syntax). Also note that some run-time exceptions have data members, which, for brevity, we have omitted in the Ice run-time exception
hierarchy. These data members provide additional information about the precise cause of an error.

124

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Many of the run-time exceptions have self-explanatory names, such as Menor yLi ni t Except i on. Others indicate problems in the Ice run
time, such as Encapsul ati onExcept i on. Still others can arise only through application programming errors, such as Twoway Onl yExcep
ti on. In practice, you will likely never see most of these exceptions. However, there are a few run-time exceptions you will encounter and
whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side and raised locally in the client. For example, if an attempt to contact a server fails, the
client-side run time raises a Connect Ti meout Excepti on.

However, there are a few specific error conditions (shown as shaded in the Ice run-time exception hierarchy diagram) that are detected by
the server and transmitted to the client via the Ice protocol: Obj ect Not Exi st Except i on, Facet Not Exi st Excepti on and Oper ati onN
ot Exi st Except i on (collectively the Request Failed exceptions) plus UnknownExcept i on, UnknownLocal Except i on and UnknownUs
er Except i on (collectively the Unknown exceptions).

All other run-time exceptions (not shaded in the Ice run-time exception hierarchy) are detected by the client-side run time and are raised
locally.

It is possible for the implementation of an operation to throw Ice run-time exceptions (as well as user exceptions). For example, if a client
holds a proxy to an object that no longer exists in the server, your server application code is required to throw an Obj ect Not Exi st Except
i on. If you do throw run-time exceptions from your application code, you should take care to throw a run-time exception only if appropriate,
that is, do not use run-time exceptions to indicate something that really should be a user exception. Doing so can be very confusing to the
client: if the application "hijacks" some run-time exceptions for its own purposes, the client can no longer decide whether the exception was
thrown by the Ice run time or by the server application code. This can make debugging very difficult.

Request Failed Exceptions

Obj ect Not Exi st Excepti on
This exception indicates that a request was delivered to the server but the server could not locate a servant with the identity that is

embedded in the proxy. In other words, the server could not find an object to dispatch the request to.

The Ice run time raises Cbj ect Not Exi st Except i on only if there are no facets in existence with a matching identity; otherwise,
it raises Facet Not Exi st Excepti on.

Most likely, this is the case because the object existed some time in the past and has since been destroyed, but the same exception is also
raised if a client uses a proxy with the identity of an object that has never been created.

Facet Not Exi st Excepti on

The client attempted to contact a non-existent facet of an object, that is, the server has at least one servant with the given identity, but no
servant with a matching facet name.

Oper at i onNot Exi st Excepti on

This exception is raised if the server could locate an object with the correct identity but, on attempting to dispatch the client's operation
invocation, the server found that the target object does not have such an operation. You will see this exception in only two cases:

® Client and server have been built with Slice definitions for an interface that disagree with each other, that is, the client was built with
an interface definition for the object that indicates that an operation exists, but the server was built with a different version of the
interface definition in which the operation is absent.

® You have used an unchecked down-cast on a proxy of the incorrect type.

Obj ect Not Exi st Except i on, Facet Not Exi st Excepti on and Oper at i onNot Exi st Except i on derive from Request Fai |
edExcepti on, and don't add any data member for this exception:

125 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

{
{

nodul e | ce

| ocal slice RequestFail Exception

Identity id;
string facet;
string operation;

Request Fai | edExcept i on itself is not transmissible as a response from a server to client—only the three derived exceptions

are.

If you throw one of these three exceptions from the implementation of an operation, and you leave i d, f acet or operati on emp
ty, lce will automatically fill-in the missing data members using values from Current.

Unknown Exceptions

Any error condition on the

server side that is not described by one of the three preceding exceptions is made known to the client as one of

three generic exceptions: UnknownUser Except i on, UnknownLocal Excepti on, or UnknownExcept i on. Furthermore if a servant
implementation throws one of these Unknown exceptions, the Ice run time transmits it as is—it does not wrap it a new UnknownLocal Excep

tion.
nmodul e | ce
{
| ocal exception UnknownException
{
string unknown;
}
| ocal exception UnknownLocal Exception extends UnknownExcepti on
{
}
| ocal exception UnknownUser Exception extends UnknownException
{
}
}
UnknownUserException

This exception indicates that an operation implementation has thrown a Slice exception that is not declared in the operation's exception
specification (and is not derived from one of the exceptions in the operation's exception specification). Ice itself never throws this exception,
as all user-exception checking for a given operation is performed only in the client's generated code and Ice run-time. It is nevertheless
permissible for a servant to throw this exception.

UnknownlLocal Excepti on

If an operation implementation raises a run-time exception other than Cbj ect Not Exi st Except i on, Facet Not Exi st Excepti on, Qper a

126

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

ti onNot Exi st Excepti on or UnknownExcepti on (such as a Not Regi st er edExcept i on), the client receives an UnknownLocal Exc
ept i on. In other words, the Ice protocol does not transmit the exact exception that was encountered in the server, but simply returns a bit to
the client in the reply to indicate that the server encountered a run-time exception.

A common cause for a client receiving an UnknownLocal Except i on is failure to catch and handle all exceptions in the server. For
example, if the implementation of an operation encounters an exception it does not handle, the exception propagates all the way up the call
stack until the stack is unwound to the point where the Ice run time invoked the operation. The Ice run time catches all Ice exceptions that
"escape" from an operation invocation and returns them to the client as an UnknownLocal Excepti on.

UnknownExcepti on

An operation has thrown a non-Ice exception. For example, if the operation in the server throws a C++ exception, such as a st d: : bad_al |
oc, or a Java exception, such as a C assCast Except i on, the client receives an UnknownExcept i on.

See Also

User Exceptions

Interfaces, Operations, and Exceptions
Operations

Proxies for Ice Objects

Interface Inheritance

Versioning

127 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Proxies for Ice Objects

Building on the Cl ock example, we can create definitions for a world-time server:

Slice

exception CenericError {
string reason;

H

struct Ti meOf Day {
short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

b
exception BadTi meVal extends CenericError {};

interface C ock {

i denmpot ent Ti meOf Day get Ti me();

i denpotent void setTime(TimeOfDay tinme) throws BadTi neVal ;
b

di ctionary<string, C ock*> TineMap; // Time zone name to clock map
exception BadZoneName extends GenericError {};

interface Worl dTi ne {
i denmpot ent voi d addZone(string zoneNane, C ock* zoned ock);
voi d renoveZone(string zoneNane) throws BadZoneNane;
i denpot ent C ock* findZone(string zoneNane) throws BadZoneNane;
i denpotent TimeMap |istZones();
i denpot ent voi d set Zones(Ti neMap zones);

H

The Wor | dTi me interface acts as a collection manager for clocks, one for each time zone. In other words, the Wor | dTi ne interface
manages a collection of pairs. The first member of each pair is a time zone name; the second member of the pair is the clock that provides
the time for that zone. The interface contains operations that permit you to add or remove a clock from the map (addZone and r enbveZone
), to search for a particular time zone by name (f i ndZone), and to read or write the entire map (I i st Zones and set Zones).

The Wor | dTi me example illustrates an important Slice concept: note that addZone accepts a parameter of type G ock* and f i ndZone ret
urns a parameter of type G ock*. In other words, interfaces are types in their own right and can be passed as parameters. The * operator is
known as the proxy operator. Its left-hand argument must be an interface (or class) and its return type is a proxy. A proxy is like a pointer
that can denote an object. The semantics of proxies are very much like those of C++ class instance pointers:

® A proxy can be null.

® A proxy can dangle (point at an object that is no longer there).

® QOperations dispatched via a proxy use late binding: if the actual run-time type of the object denoted by the proxy is more derived
than the proxy's type, the implementation of the most-derived interface will be invoked.

When a client passes a Cl ock proxy to the addZone operation, the proxy denotes an actual G ock object in a server. The Cl ock Ice object
denoted by that proxy may be implemented in the same server process as the Wor | dTi e interface, or in a different server process. Where
the O ock object is physically implemented matters neither to the client nor to the server implementing the Wor | dTi e interface; if either
invokes an operation on a particular clock, such as get Ti e, an RPC call is sent to whatever server implements that particular clock. In
other words, a proxy acts as a local "ambassador" for the remote object; invoking an operation on the proxy forwards the invocation to the

128 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-NullProxies

129

Ice 3.6.4 Documentation

actual object implementation. If the object implementation is in a different address space, this results in a remote procedure call; if the object
implementation is collocated in the same address space, the Ice run time may optimize the invocation.

Note that proxies also act very much like pointers in their sharing semantics: if two clients have a proxy to the same object, a state change
made by one client (such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ and Java). This means that you cannot pass something other
than a Cl ock proxy to the addZone operation; attempts to do so are rejected at compile time.

See Also

Classes

Interfaces, Operations, and Exceptions
User Exceptions

Run-Time Exceptions

Interface Inheritance

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Interface Inheritance

On this page:
® Interface Inheritance
Interface Inheritance Limitations
Implicit Inheritance from Object
Null Proxies
Self-Referential Interfaces
Empty Interfaces
Interface Versus Implementation Inheritance

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time server to support the concept of an alarm clock:

Slice

interface Al arnCl ock extends C ock {
i denmpot ent Ti meOF Day get Al ar nili me() ;
i denpotent voi d set Al arnili me(Ti meOf Day al ar nili ne)
t hr ows BadTi neVal ;

b

The semantics of this are the same as for C++ or Java: Al ar nCl ock is a subtype of G ock and an Al ar nCl ock proxy can be substituted
wherever a Cl ock proxy is expected. Obviously, an Al ar nCl ock supports the same get Ti me and set Ti me operations as a C ock but
also supports the get Al ar nili ne and set Al ar nTi e operations.

Multiple interface inheritance is also possible. For example, we can construct a radio alarm clock as follows:

Slice

interface Radio {
voi d set Frequency(long hertz) throws GenericError;
voi d set Vol une(long dB) throws GenericError;

s
enum Al armvbde { Radi oAl arm BeepAl arm};

i nterface Radi od ock extends Radi o, Al arnC ock {
voi d set Mbde(Al ar mivbde node) ;
Al ar mvbde get Mbde() ;

s

Radi oC ock extends both Radi o0 and Al ar nCl ock and can therefore be passed where a Radi o, an Al ar nCl ock, or a d ock is
expected. The inheritance diagram for this definition looks as follows:

130 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Clock
<<zjinterface>=

Radio
=<interface=>

F]

AlarmClock
=<interface==

RadioClock
<<intarface==

Inheritance diagram for Radi oCl ock.

Interfaces that inherit from more than one base interface may share a common base interface. For example, the following definition is legal:

Slice
interface B{ /* [},
interface 11 extends B{ /* ... */ };
interface 12 extends B { /* *[),
interface D extends 11, 12 { /* * 0},

This definition results in the familiar diamond shape:

B
<<intarfacass

— =

1z
<<interfaces»>

c<interfacex>>

(b]
<winterfaces>

Diamond-shaped inheritance.

Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation name from more than one base interface. For example, the
following definition is illegal:

131 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

interface C ock {

void set(TineOrDay tine); [l set tine
i
interface Radio {

voi d set(long hertz); /1 set frequency
s
i nterface Radi oC ock extends Radi o, O ock { /1 11legal!

/1
s

This definition is illegal because Radi oCl ock inherits two set operations, Radi o: : set and O ock: : set . The Slice compiler makes this
illegal because (unlike C++) many programming languages do not have a built-in facility for disambiguating the different operations. In Slice,
the simple rule is that all inherited operations must have unique names. (In practice, this is rarely a problem because inheritance is rarely
added to an interface hierarchy "after the fact". To avoid accidental clashes, we suggest that you use descriptive operation names, such as s
et Ti me and set Fr equency. This makes accidental name clashes less likely.)

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Obj ect . For example, the inheritance hierarchy would be shown more correctly as:

Object
<<interface=>

h‘-‘-‘-""‘"—-._,__
Implicit inheritance

—

Implicit inheritance Clock
<<jinterfaca>>
[y
Radio AlarmClock
<<interface=> <<interface=>
RadioClock

<<jnterface=>

Implicit inheritance from Cbj ect .

Because all interfaces have a common base interface, we can pass any type of interface as that type. For example:

132 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

interface ProxyStore {
i denpotent voi d putProxy(string name, Object* o);
i denpot ent (Obj ect* get Proxy(string nane);

s

bj ect is a Slice keyword (note the capitalization) that denotes the root type of the inheritance hierarchy. The Pr oxy St or e interface is a
generic proxy storage facility: the client can call put Pr oxy to add a proxy of any type under a given name and later retrieve that proxy again
by calling get Pr oxy and supplying that name. The ability to generically store proxies in this fashion allows us to build general-purpose
facilities, such as a naming service that can store proxies and deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers.

Inheritance from type Obj ect is always implicit. For example, the following Slice definition is illegal:

Slice

interface MyInterface extends Gbject { /* ... */ }; /| Error!

It is understood that all interfaces inherit from type Cbj ect ; you are not allowed to restate that.

Type Obj ect is mapped to an abstract type by the various language mappings, so you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the Pr oxy St or e interface once more, we notice that get Pr oxy does not have an exception specification. The question then is
what should happen if a client calls get Pr oxy with a name under which no proxy is stored? Obviously, we could add an exception to
indicate this condition to get Pr oxy. However, another option is to return a null proxy. Ice has the built-in notion of a null proxy, which is a
proxy that "points nowhere". When such a proxy is returned to the client, the client can test the value of the returned proxy to check whether
it is null or denotes a valid object.

A more interesting question is: "which approach is more appropriate, throwing an exception or returning a null proxy?" The answer depends
on the expected usage pattern of an interface. For example, if, in normal operation, you do not expect clients to call get Pr oxy with a
non-existent name, it is better to throw an exception. (This is probably the case for our Pr oxy St or e interface: the fact that thereisno | i st
operation makes it clear that clients are expected to know which names are in use.)

On the other hand, if you expect that clients will occasionally try to look up something that is not there, it is better to return a null proxy. The
reason is that throwing an exception breaks the normal flow of control in the client and requires special handling code. This means that you
should throw exceptions only in exceptional circumstances. For example, throwing an exception if a database lookup returns an empty result
set is wrong; it is expected and normal that a result set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that get these details right are easier to use and easier to
understand. Not only do such interfaces make life easier for client developers, they also make it less likely that latent bugs cause problems
later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For example:

133 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

i nterface Link {
i denpot ent SonmeType get Val ue();
i denmpot ent Li nk* next ();

b

The Li nk interface contains a next operation that returns a proxy to a Li nk interface. Obviously, this can be used to create a chain of
interfaces; the final link in the chain returns a null proxy from its next operation.

Empty Interfaces

The following Slice definition is legal:

Slice

interface Enpty {};

The Slice compiler will compile this definition without complaint. An interesting question is: "why would | need an empty interface?" In most
cases, empty interfaces are an indication of design errors. Here is one example:

Slice

i nterface Thi ngBase {};

i nterface Thingl extends Thi ngBase {
/1l Operations here...

H

i nterface Thing2 extends Thi ngBase {
/1l Operations here..

H

Looking at this definition, we can make two observations:

® Thi ngl and Thi ng2 have a common base and are therefore related.
® Whatever is common to Thi ngl and Thi ng2 can be found in interface Thi ngBase.

Of course, looking at Thi ngBase, we find that Thi ngl and Thi ng2 do not share any operations at all because Thi ngBase is empty. Given
that we are using an object-oriented paradigm, this is definitely strange: in the object-oriented model, the only way to communicate with an
object is to send a message to the object. But, to send a message, we need an operation. Given that Thi ngBase has no operations, we
cannot send a message to it, and it follows that Thi ngl and Thi ng2 are not related because they have ho common operations. But of
course, seeing that Thi ngl and Thi ng2 have a common base, we conclude that they are related, otherwise the common base would not
exist. At this point, most programmers begin to scratch their head and wonder what is going on here.

One common use of the above design is a desire to treat Thi ngl and Thi ng2 polymorphically. For example, we might continue the
previous definition as follows:

134 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

i nterface ThingUser ({
voi d put Thi ng(Thi ngBase* thing);
i

Now the purpose of having the common base becomes clear: we want to be able to pass both Thi ngl and Thi ng2 proxies to put Thi ng.
Does this justify the empty base interface? To answer this question, we need to think about what happens in the implementation of put Thi n
g. Obviously, put Thi ng cannot possibly invoke an operation on a Thi ngBase because there are no operations. This means that put Thi n
g can do one of two things:

1. putThing can simply remember the value of t hi ng.
2. putThing can try to down-cast to either Thi ngl or Thi ng2 and then invoke an operation. The pseudo-code for the implementation
of put Thi ng would look something like this:

voi d put Thi ng(Thi ngBase t hi ng)
{
if (is_a(Thingl, thing)) {
/1 Do sonething with Thingl...
} else if (is_a(Thing2, thing)) {
/1 Do sonething with Thing2...
} else {
/1 M ght be a ThingBase?
11

The implementation tries to down-cast its argument to each possible type in turn until it has found the actual run-time type of the
argument. Of course, any object-oriented text book worth its price will tell you that this is an abuse of inheritance and leads to
maintenance problems.

If you find yourself writing operations such as put Thi ng that rely on artificial base interfaces, ask yourself whether you really need to do
things this way. For example, a more appropriate design might be:

135 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

i nterface Thingl {
/1l Operations here..

H

i nterface Thing2 {
/'l Operations here...

b

i nterface ThingUser ({
voi d put Thi ng1(Thi ngl* thing);
voi d put Thi ng2(Thi ng2* thing);
i

With this design, Thi ngl and Thi ng2 are not related, and Thi ngUser offers a separate operation for each type of proxy. The
implementation of these operations does not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

Slice

i nterface Persistent Qhject {};

i nterface Thingl extends PersistentObject {
/'l Operations here...

H

i nterface Thing2 extends PersistentGbject {
/1l Operations here...

H

Clearly, the intent of this design is to place persistence functionality into the Per si st ent Obj ect base implementation and require objects
that want to have persistent state to inherit from Per si st ent Obj ect . On the face of things, this is reasonable: after all, using inheritance in
this way is a well-established design pattern, so what can possibly be wrong with it? As it turns out, there are a number of things that are
wrong with this design:

136

® The above inheritance hierarchy is used to add behavior to Thi ngl and Thi ng2. However, in a strict OO model, behavior can be

invoked only by sending messages. But, because Per si st ent Obj ect has no operations, no messages can be sent.

This raises the question of how the implementation of Per si st ent Obj ect actually goes about doing its job; presumably, it knows
something about the implementation (that is, the internal state) of Thi ngl and Thi ng2, so it can write that state into a database.
But, if so, Per si st ent Obj ect, Thi ngl1, and Thi ng2 can no longer be implemented in different address spaces because, in that
case, Per si st ent Obj ect can no longer get at the state of Thi ngl and Thi ng2.

Alternatively, Thi ngl and Thi ng2 use some functionality provided by Per si st ent Cbj ect in order to make their internal state
persistent. But Per si st ent Obj ect does not have any operations, so how would Thi ng1 and Thi ng2 actually go about achieving
this? Again, the only way that can work is if Per si st ent Obj ect, Thi ngl, and Thi ng2 are implemented in a single address space
and share implementation state behind the scenes, meaning that they cannot be implemented in different address spaces.

The above inheritance hierarchy splits the world into two halves, one containing persistent objects and one containing non-persistent
ones. This has far-reaching ramifications:
® Suppose you have an existing application with already implemented, non-persistent objects. Requirements change over
time and you find that you now would like to make some of your objects persistent. With the above design, you cannot do

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

this unless you change the type of your objects because they now must inherit from Per si st ent Cbj ect . Of course, this is
extremely bad news: not only do you have to change the implementation of your objects in the server, you also need to
locate and update all the clients that are currently using your objects because they suddenly have a completely new type.
What is worse, there is no way to keep things backward compatible: either all clients change with the server, or none of
them do. It is impossible for some clients to remain "unupgraded".

® The design does not scale to multiple features. Imagine that we have a number of additional behaviors that objects can
inherit, such as serialization, fault-tolerance, persistence, and the ability to be searched by a search engine. We quickly end
up in a mess of multiple inheritance. What is worse, each possible combination of features creates a completely separate
type hierarchy. This means that you can no longer write operations that generically operate on a number of object types.
For example, you cannot pass a persistent object to something that expects a non-persistent object, even if the receiver of
the object does not care about the persistence aspects of the object. This quickly leads to fragmented and hard-to-maintain
type systems. Before long, you will either find yourself rewriting your application or end up with something that is both
difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface definition language that has nothing to do with implementatio
n (but empty interfaces almost always indicate that implementation state is shared via mechanisms other than defined interfaces). If you find
yourself writing an empty interface definition, at least step back and think about the problem at hand; there may be a more appropriate
design that expresses your intent more cleanly. If you do decide to go ahead with an empty interface regardless, be aware that, almost
certainly, you will lose the ability to later change the distribution of the object model over physical server processes because you cannot
place an address space boundary between interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In particular, if two interfaces are in an inheritance relationship, this in
no way implies that the implementations of those interfaces must also inherit from each other. You can choose to use implementation
inheritance when you implement your interfaces, but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation inheritance by default, and interface inheritance requires
extra effort to implement.)

In summary, Slice inheritance simply establishes type compatibility. It says nothing about how interfaces are implemented and, therefore,
keeps implementation choices open to whatever is most appropriate for your application.

See Also

Interfaces, Operations, and Exceptions
Operations

User Exceptions

Run-Time Exceptions

Proxies for Ice Objects

IceGrid

137 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like interfaces in that they can have operations and are like
structures in that they can have data members. This leads to hybrid objects that can be treated as interfaces and passed by reference, or
can be treated as values and passed by value.

Classes support inheritance and are therefore polymorphic: at run time, you can pass a class instance to an operation as long as the actual
class type is derived from the formal parameter type in the operation's signature. This also permits classes to be used as type-safe unions,
similarly to Pascal's discriminated variant records.

Topics

Simple Classes

Class Inheritance

Class Inheritance Semantics
Classes as Unions

Self-Referential Classes

Classes Versus Structures

Classes with Operations
Architectural Implications of Classes
Classes Implementing Interfaces
Class Inheritance Limitations
Pass-by-Value Versus Pass-by-Reference
Passing Interfaces by Value
Classes with Compact Type IDs

138 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Simple Classes

A Slice class definition is similar to a structure definition, but uses the cl ass keyword. For example:

Slice

class Ti mef Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

s

Apart from the keyword cl ass, this definition is identical to the structure example. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use a class where a structure is sufficient). Unlike structures,
classes can be empty:

Slice

cl ass Emptyd ass {}; I K
struct EnptyStruct {}; [/ Error

Much the same design considerations as for empty interfaces apply to empty classes: you should at least stop and rethink your approach
before committing yourself to an empty class.

A class can define any number of data members, including optional data members. You can also specify a default value for a data member if
its type is one of the following:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

cl ass Location {
string nane;

Poi nt pt;
bool display = true;
string source = "GPS";

H

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Also

® Structures
® Constants and Literals

139 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-EmptyInterfaces
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Floating-PointTypes
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Strings
https://doc.zeroc.com/display/Ice36/Basic+Types#BasicTypes-Booleans

Ice 3.6.4 Documentation

® Optional Data Members

140 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Class Inheritance

Unlike structures, classes support inheritance. For example:

Slice

class Ti mef Day {

short hour; // 0 - 23
short m nute; /1 0 - 59
short second; /1 0 - 59
}
cl ass DateTi ne extends Ti meCf Day {
short day; /11 - 31
short nont h; /1 - 12
short vyear; /1 1753 onwar ds

H

This example illustrates one major reason for using a class: a class can be extended by inheritance, whereas a structure is not extensible.

The previous example defines Dat eTi ne to extend the Ti meCf Day class with a date.

If you are puzzled by the comment about the year 1753, search the Web for "1752 date change". The intricacies of calendars for

various countries prior to that year can keep you occupied for months...

Classes only support single inheritance. The following is illegal:

Slice

class Ti meOk Day {
short hour; // 0 - 23
short m nute; /1 0 - 59
short second; /!l 0 - 59

b

class Date {
short day;
short nonth;
short vyear;

H

cl ass DateTi me extends TineOf Day, Date { /'l Error!
11

H

A derived class also cannot redefine a data member of its base class:

141

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

cl ass Base {

i nt integer;
b
cl ass Derived extends Base {

i nt integer; /'l Error, integer redefined
s

See Also

® Structures

142 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class instance to an operation, the class and all its members are
passed. The usual type compatibility rules apply: you can pass a derived instance where a base instance is expected. If the receiver has
static type knowledge of the actual derived run-time type, it receives the derived instance; otherwise, if the receiver does not have static type
knowledge of the derived type, depending on the format used to encode the class, it will either fail to read the instance or slice the instance
to the base type.

For an example, suppose we have the following definitions:

Slice

Il In file dock.ice:

class Ti meOk Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

1
interface C ock {
Ti reOf Day get Ti me();
void setTime(Ti meOfDay tine);
1
/1 In file DateTimne.ice:

#i ncl ude <d ock.ice>

cl ass DateTi ne extends Ti meOf Day {

short day; /11 - 31
short nonth; /11 - 12
short vyear; /1 1753 onwards

s

Because Dat eTi ne is a sub-class of Ti meCf Day, the server can return a Dat eTi e instance from get Ti ne, and the client can pass a Dat
eTi ne instance to set Ti me. In this case, if both client and server are linked to include the code generated for both Cl ock. i ce and Dat eT
i me. i ce, they each receive the actual derived Dat eTi ne instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code generated for both Cl ock. i ce and Dat eTi ne. i ce, but the client
is linked only with the code generated for Cl ock. i ce. In other words, the server understands the type Dat eTi ne and can return a Dat eTi
me instance from get Ti me, but the client only understands Ti meCf Day. In this case, there are two possible outcomes depending on the
format used by the server to encode the instance:

® with the sliced format, the derived Dat eTi ne instance returned by the server is sliced to its Ti meCf Day base type in the client
® with the compact format, get Ti ne fails with the | ce: : NoObj ect Fact or yExcept i on exception

See Design Considerations for Objects for additional information on the sliced and compact formats.

Class hierarchies are useful if you need polymorphic values (instead of polymorphic interfaces). For example:

143 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Slicing+Values+and+Exceptions#SlicingValuesandExceptions-DesignConsiderationsforObjects

Ice 3.6.4 Documentation

Slice

cl ass Shape {
/1 Definitions for shapes, such as size, center,

s

class Gircle extends Shape {
/'l Definitions for circles, such as radius..

H

cl ass Rectangl e extends Shape {
H

sequence<Shape> ShapeSeq;

i nterface ShapeProcessor {
voi d processShapes(ShapeSeq ss);

b

/1 Definitions for rectangles, such as width and |ength..

Note the definition of ShapeSeq and its use as a parameter to the pr ocessShapes operation: the class hierarchy allows us to pass a

polymorphic sequence of shapes (instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and down-cast each element to its actual run-time type. (The

receiver can also ask each element for its type ID to determine its type.)

See Also

® Structures
® Type IDs

144

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By deriving classes from a common base class, you can create the
same effect as with a union:

Slice

i nterface ShapeShifter {
Shape transl at e(Shape s, |1 ong xDi stance, |ong yDi stance);

H

The parameter s of the t r ansl at e operation can be viewed as a union of two members: a G r cl e and a Rect angl e. The receiver ofa S
hape instance can use the type ID of the instance to decide whether it received a Ci r cl e or a Rect angl e. Alternatively, if you want
something more along the lines of a conventional discriminated union, you can use the following approach:

Slice

class Uni onDi scrimnator {

int d;
i
cl ass Menber1l extends Uni onDi scrim nator {
[/ d==1
string s;
float f;
i
cl ass Menber2 extends UnionDi scrim nator {
[/ d==2
byte b;
int i;

H

With this approach, the Uni onDi scri ni nat or class provides a discriminator value. The "members" of the union are the classes that are
derived from Uni onDi scri m nat or . For each derived class, the discriminator takes on a distinct value. The receiver of such a union uses
the discriminator value in a swi t ch statement to select the active union member.

See Also

® Type IDs

145 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Self-Referential Classes

Classes can be self-referential.

For example:

Slice

class Link {
SomeType val ue;
Li nk next;

H

This looks very similar to the self-referential interface example, but the semantics are very different. Note that val ue and next are data
members, not operations, and that the type of next is Li nk (not Li nk*). As you would expect, this forms the same linked list arrangement
as the Li nk interface in Self-Referential Interfaces: each instance of a Li nk class contains a next member that points at the next link in the
chain; the final link's next member contains a null value. So, what looks like a class including itself really expresses pointer semantics: the n
ext data member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the Li nk interface in Self-Referential Interfaces and the Li nk class
shown above. The difference is that classes have value semantics, whereas proxies have reference semantics. To illustrate this, consider
the Li nk interface from Self-Referential Interfaces once more:

Slice

i nterface Link {
i denpot ent SonmeType get Val ue();
i dempot ent Li nk* next () ;

H

Here, get Val ue and next are both operations and the return value of next is Li nk*, that is, next returns a proxy. A proxy has reference s
emantics, that is, it denotes an object somewhere. If you invoke the get Val ue operation on a Li nk proxy, a message is sent to the
(possibly remote) servant for that proxy. In other words, for proxies, the object stays put in its server process and we access the state of the
object via remote procedure calls. Compare this with the definition of our Li nk class:

Slice

class Link {
SoneType val ue;
Li nk next;

b

Here, val ue and next are data members and the type of next is Li nk, which has value semantics. In particular, while next looks and feels
like a pointer, it cannot denote an instance in a different address space. This means that if we have a chain of Li nk instances, all of the
instances are in our local address space and, when we read or write a value data member, we are performing local address space
operations. This means that an operation that returns a Li nk instance, such as get Head, does not just return the head of the chain, but the

entire chain, as shown:

146 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces

Ice 3.6.4 Documentation

Client Server Client Server

getHead

h{—'

O

Class version of Li nk before and after calling get Head.

On the other hand, for the interface version of Li nk, we do not know where all the links are physically implemented. For example, a chain of
four links could have each object instance in its own physical server process; those server processes could be each in a different continent. If
you have a proxy to the head of this four-link chain and traverse the chain by invoking the next operation on each link, you will be sending
four remote procedure calls, one to each object.

Self-referential classes are particularly useful to model graphs. For example, we can create a simple expression tree along the following
lines:

Slice

enum UnaryQp { UnaryPl us, UnaryM nus, Not };
enum BinaryQp { Plus, Mnus, Miltiply, Divide, And, O };

cl ass Node {};

cl ass UnaryQperator extends Node {
UnaryOp operator;
Node operand;

b

cl ass Bi naryQperat or extends Node {
Bi naryQp op
Node operandil;
Node operand?;

H

cl ass Operand extends Node {
| ong val ;

H

The expression tree consists of leaf nodes of type Oper and, and interior nodes of type Unar yOper at or and Bi nar yOper at or , with one
or two descendants, respectively. All three of these classes are derived from a common base class Node. Note that Node is an empty class.
This is one of the few cases where an empty base class is justified. (See the discussion on empty interfaces; once we add operations to this
class hierarchy, the base class is no longer empty.)

147 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-EmptyInterfaces

Ice 3.6.4 Documentation

If we write an operation that, for example, accepts a Node parameter, passing that parameter results in transmission of the entire tree to the
server:

Slice

i nterface Eval uator ({
| ong eval (Node expression); // Send entire tree for evaluation

s

Self-referential classes are not limited to acyclic graphs; the Ice run time permits loops: it ensures that no resources are leaked and that
infinite loops are avoided during marshaling.

See Also

® Classes with Operations
® Self-Referential Interfaces

148 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces

Ice 3.6.4 Documentation

Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes, when classes obviously can be used to model
structures? The answer has to do with the cost of implementation: classes provide a number of features that are absent for structures:

Classes support inheritance.

Classes can be self-referential.

Classes can have optional data members.
Classes can have operations.

Classes can implement interfaces.

Obviously, an implementation cost is associated with the additional features of classes, both in terms of the size of the generated code and
the amount of memory and CPU cycles consumed at run time. On the other hand, structures are simple collections of values (“plain old
structs") and are implemented using very efficient mechanisms. This means that, if you use structures, you can expect better performance
and smaller memory footprint than if you would use classes (especially for languages with direct support for “plain old structures”, such as
C++ and C#). Use a class only if you need at least one of its more powerful features.

See Also
® Structures

® Classes with Operations
® Classes Implementing Interfaces

149 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Classes with Operations

Classes, in addition to data members, can have operations. The syntax for operation definitions in classes is identical to the syntax for
operations in interfaces. For example, we can modify the expression tree from Self-Referential Classes as follows:

Slice

enum UnaryQp { UnaryPl us, UnaryM nus, Not };
enum BinaryOp { Plus, Mnus, Miltiply, Divide, And, O };

cl ass Node {
i denpotent |ong eval ();

b

cl ass UnaryQOperator extends Node {
UnaryOp operator;
Node operand;

H

cl ass Bi naryQperat or extends Node {
Bi naryQp op;
Node operandil;
Node operand?;

s

cl ass Operand {
| ong val;

b

The only change compared to the version in Self-Referential Classes is that the Node class now has an eval operation. The semantics of
this are as for a virtual member function in C++: each derived class inherits the operation from its base class and can choose to override the
operation's definition. For our expression tree, the Oper and class provides an implementation that simply returns the value of its val memb
er, and the Unar yOper at or and Bi nar yOper at or classes provide implementations that compute the value of their respective subtrees. If
we call eval on the root node of an expression tree, it returns the value of that tree, regardless of whether we have a complex expression or
a tree that consists of only a single Oper and node.

Operations on classes are normally executed in the caller's address space, that is, operations on classes are local operations that do not

result in a remote procedure call.

It is also possible to invoke an operation on a remote class instance.

Of course, this immediately raises an interesting question: what happens if a client receives a class instance with operations from a server,
but client and server are implemented in different languages? Classes with operations require the receiver to supply a factory for instances of
the class. The Ice run time only marshals the data members of the class. If a class has operations, the receiver of the class must provide a
class factory that can instantiate the class in the receiver's address space, and the receiver is responsible for providing an implementation of
the class's operations.

Therefore, if you use classes with operations, it is understood that client and server each have access to an implementation of the class's
operations. No code is shipped over the wire (which, in an environment of heterogeneous nodes using different operating systems and
languages is infeasible).

See Also

® Self-Referential Classes

150 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

® Pass-by-Value Versus Pass-by-Reference

151 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in some detail.

On this page:
® Classes without Operations
® Classes with Operations
® Classes for Persistence

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-referential or not) pose no architectural problems: they simply
are values that are marshaled like any other value, such as a sequence, structure, or dictionary. Classes using derivation also pose no
problems: if the receiver of a derived instance has knowledge of the derived type, it simply receives the derived type; otherwise, the instance
is sliced to the most-derived type that is understood by the receiver. This makes class inheritance useful as a system is extended over time:
you can create derived class without having to upgrade all parts of the system at once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose that you are creating an Ice application. Also assume that
the Slice definitions use quite a few classes with operations. You sell your clients and servers (both written in Java) and end up with
thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients written in C++.

For commercial reasons, you would like to leave the development of C++ clients to customers or a third party but, at this point, you discover
a glitch: your application has lots of classes with operations along the following lines:

Slice

cl ass Conpl exThi ngFor ExpertsOnly {
/1 Lots of arcane data nenbers here...
Myst eri ousThi ng mysteriousQperation(/* paraneters */);
ArcaneThi ng arcaneQperation(/* paraneters */);
Conpl exThi ng conpl exOperation(/* paraneters */);
Il etc...
s

It does not matter what exactly these operations do. (Presumably, you decided to off-load some of the processing for your application onto
the client side for performance reasons.) Now that you would like other developers to write C++ clients, it turns out that your application will
work only if these developers provide implementations of all the client-side operations and, moreover, if the semantics of these operations
exactly match the semantics of your Java implementations. Depending on what these operations do, providing exact semantic equivalents in
a different language may not be trivial, so you decide to supply the C++ implementations yourself.

But now, you discover another problem: the C++ clients need to be supported for a variety of operating systems that use a variety of different
C++ compilers. Suddenly, your task has become quite daunting: you really need to supply implementations for all the combinations of
operating systems and compiler versions that are used by clients. Given the different state of compliance with the ISO C++ standard of the
various compilers, and the idiosyncrasies of different operating systems, you may find yourself facing a development task that is much larger
than anticipated. And, of course, the same scenario will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided; they can provide significant performance gains and are not
necessarily bad. But, keep in mind that, once you use classes with operations, you are, in effect, using client-side native code and, therefore,
you can no longer enjoy the implementation transparencies that are provided by interfaces. This means that classes with operations should
be used only if you can tightly control the deployment environment of clients. If not, you are better off using interfaces and classes without
operations. That way, all the processing stays on the server and the contract between client and server is provided solely by the Slice
definitions, not by the semantics of the additional client-side code that is required for classes with operations.

Classes for Persistence

152 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Ice also provides a built-in persistence mechanism that allows you to store the state of a class in a database with very little implementation
effort. To get access to these persistence features, you must define a Slice class whose members store the state of the class.

See Also

® Freeze

153 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class can be used to provide the behavior for an interface,
for example:

Slice

interface Tine {

i denmpot ent Ti meOf Day get Ti me();

i denpotent void setTime(Ti mreOf Day tine);
i

class O ock inplenents Tine {
Ti meOf Day ti me;
s

The i mpl enent s keyword indicates that the class C ock provides an implementation of the Ti e interface. The class can provide data
members and operations of its own; in the preceding example, the T ock class stores the current time that is accessed via the Ti ne interfac
e. A class can implement several interfaces, for example:

Slice

interface Tine {

i denpotent Ti meOr Day get Ti ne();

i denpotent void setTime(Ti mreOf Day tine);
i

interface Radio {
i denmpot ent voi d set Frequency(long hertz);
i denpotent void set Vol une(long dB);

s

cl ass Radi od ock inplenents Tine, Radio {
Ti meOf Day ti me;
| ong hertz;

H

The class Radi od ock implements both Ti me and Radi o interfaces.

A class, in addition to implementing an interface, can also extend another class:

154 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

interface Tine {

i denpotent Ti meOr Day get Ti nme();

i denmpotent void setTinme(Ti mreO Day tine);
s

class O ock inplenents Tine {
Ti reOf Day tine;
i

interface AlarnC ock extends Tine {
i denpotent Ti meOr Day get Al ar nili nme() ;
i denmpot ent voi d set Al arnili me(Ti meOf Day al ar nili nme) ;

b

interface Radio {
i denpot ent voi d set Frequency(long hertz);
i denpot ent voi d set Vol une(l ong dB);

b

cl ass Radi oAl ar nCl ock extends d ock
i mpl enents Al arntCl ock, Radio {
Ti meOX Day al ar nli e;
| ong hertz;

s

These definitions result in the following inheritance graph:

Time
w<interfaces»

[

Radio AlarmClock Clock
<<interface>=> =<jnterface=>
F 3
RadioClock

<<jnterface>>

A Class using implementation and interface inheritance.

155 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

For this definition, Radi o and Al ar nCl ock are abstract interfaces, and Cl ock and Radi oAl ar nCl ock are concrete classes. As for Java,
a class can implement multiple interfaces, but can extend at most one class.

See Also

® Architectural Implications of Classes
® Class Inheritance Limitations

156 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member that it inherits from a base interface or class. For example:

Slice

interface Baselnterface {

void op();

b

cl ass Based ass {
i nt menber;

1

cl ass Derivedd ass extends Based ass i npl enents Baselnterface {
voi d soneQperation(); Il K
int op(); /1 Error!
int soneMenber; Il K
| ong nenber; /1 Error!

s

See Also

® |nterface Inheritance

157 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Pass-by-Value Versus Pass-by-Reference

As we saw in Self-Referential Classes, classes naturally support pass-by-value semantics: passing a class transmits the data members of
the class to the receiver. Any changes made to these data members by the receiver affect only the receiver's copy of the class; the data
members of the sender's class are not affected by the changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For example:

Slice

class Ti meOk Day {
short hour;
short m nute;
short second;
string format();

H

interface Exampl e {
Ti meCf Day* get(); // Note: returns a proxy!

b

Note that the get operation returns a proxy to a Ti neOf Day class and not a Ti neOf Day instance itself. The semantics of this are as
follows:

® When the client receives a Ti neOf Day proxy from the get call, it holds a proxy that differs in no way from an ordinary proxy for an
interface.

® The client can invoke operations via the proxy, but cannot access the data members. This is because proxies do not have the
concept of data members, but represent interfaces: even though the Ti neOf Day class has data members, only its operations can
be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the Ti meOf Day class. A proxy for that instance was passed
to the client. The only thing the client can do with this proxy is to invoke the f or mat operation. The implementation of that operation is
provided by the server and, when the client invokes f or mat , it sends an RPC message to the server just as it does when it invokes an
operation on an interface. The implementation of the f or mat operation is entirely up to the server. (Presumably, the server will use the data
members of the Ti meOf Day instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, it makes perfect sense if classes implement interfaces: parts of
your application can exchange class instances (and, therefore, state) by value, whereas other parts of the system can treat these instances
as remote interfaces.

For example:

158 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

interface Tine {
string format();
/1

b

class TimeODay inplenments Tine {
short hour;
short m nute;
short second;

H

interface 11 {
Ti meOf Day get(); /1 Pass by val ue
void put(TineOfDay tine); [// Pass by val ue
s

interface 12 {
Ti me* get(); /1 Pass by reference

H

In this example, clients dealing with interface | 1 are aware of the Ti meOf Day class and pass it by value whereas clients dealing with
interface | 2 deal only with the Ti ne interface. However, the actual implementation of the Ti e interface in the server uses Ti nef Day inst
ances.

Be careful when designing systems that use such mixed pass-by-value and pass-by-reference semantics. Unless you are clear about what
parts of the system deal with the interface (pass by reference) aspects and the class (pass by value) aspects, you can end up with
something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze, which allows you to add classes to an existing interface to implement
persistence.

See Also

® Self-Referential Classes
® Freeze

159 Copyright 2017, ZeroC, Inc.

160

Ice 3.6.4 Documentation

Passing Interfaces by Value

Consider the following definitions:

Slice

interface Tine {
i denmpot ent Ti meOf Day get Ti me();
/11

s

interface Record {
void addTi meStanmp(Tinme t); // Note: Time t, not Tinme* t
/11

s

Note that addTi meSt anp accepts a parameter of type Ti me, not of type Ti me*. The question is, what does it mean to pass an interface by
value? Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot be
instantiated. Neither can we pass a proxy to a Ti ne object to addTi neSt anp because a proxy cannot be passed where an interface is
expected.

However, what we can pass to addTi meSt anp is something that is not abstract and derives from the Ti ne interface. For example, at run
time, we could pass an instance of the Ti neOf Day class we saw earlier. Because the Ti meCf Day class derives from the Ti ne interface,
the class type is compatible with the formal parameter type Ti e and, at run time, what is sent over the wire to the server is the Ti meCf Day
class instance.

See Also

® Pass-by-Value Versus Pass-by-Reference

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Classes with Compact Type IDs

As of Ice 3.5, you can optionally associate a numeric identifier with a class. The Ice run time substitutes this value, known as a compact type
ID, in place of its equivalent string type ID during marshaling to conserve space. The compact type ID follows immediately after the class
name, enclosed in parentheses:

Slice

nodul e MyModul e {

cl ass Conpact Exanpl e(4) {
/11

s

i

In this example, the Ice run time marshals the value 4 instead of its string equivalent " : : MyModul e: : Conpact Exanpl e". The specified
value must be a non-negative integer that is unique within the translation unit.

Using values less than 255 produces the most efficient encoding.

See Also

® Classes
® Type IDs
® Data Encoding for Class Type IDs

161 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit the creation of mutually dependent objects, for example:

Slice

nmodul e Fam |y {
interface Child; /1 Forward declaration

sequence<Chil d*> Children; // K

interface Parent {
Children getChildren(); // OK

s

interface Child { /] Definition
Par ent * get Mot her () ;
Parent * get Fat her () ;

b

H

Without the forward declaration of Chi | d, the definition obviously could not compile because Chi | d and Par ent are mutually dependent
interfaces. You can use forward-declared interfaces and classes to define types (such as the Chi | dr en sequence in the previous example).
Forward-declared interfaces and classes are also legal as the type of a structure, exception, or class member, as the value type of a
dictionary, and as the parameter and return type of an operation. However, you cannot inherit from a forward-declared interface or class until
after its definition has been seen by the compiler:

Slice
i nterface Base; /'l Forward decl aration
interface Derivedl extends Base {}; /1 Error!
i nterface Base {}; /1 Definition
interface Derived2 extends Base {}; /1 OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is seen is necessary because, otherwise, the compiler could
not enforce that derived interfaces must not redefine operations that appear in base interfaces.

A multi-pass compiler could be used, but the added complexity is not worth it.

See Also

® Interfaces, Operations, and Exceptions
® Classes

162 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Optional Data Members

On this page:

® Overview of Optional Data Members
® Declaring Optional Data Members
® Optional Data Members with Default Values

Overview of Optional Data Members

As of Ice 3.5, a data member of a Slice class or exception may be declared as optional to indicate that a program can leave its value unset.
Data members not declared as optional are known as required members; a program must supply legal values for all required members.

Declaring Optional Data Members

Each optional data member in a type must be assigned a unique, non-negative integer tag:

Slice

class C
{
string nane;
bool acti ve;
optional (2) string alternateNane;
optional (5) int overrideCode;

H

It is legal for a base type's tag to be reused by a derived type:

Slice

exception Base

{
optional (1) int systenCode;
s
exception Derived extends Base
{
optional (1) string diagnostic; // K
i

The scope of a tag is limited to its enclosing type and has no effect on base or derived types.

Language mappings specify an API for setting an optional member and testing whether a member is set. Here is an example in C++:

163 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
CPtr ¢ = new G
c->nane = "xyz"; /1 required
c->active = true; /1 required
c->al ternateNane = "abc"; [/ optional
c->overri deCode = 42; /1 optional
i f(c->alternateNane)
cout << "alt name = " << c->alternateNane << endl;

As you can see, the C++ language mapping makes setting an optional member as simple as assigning it a value. Refer to the language
mapping sections for more details on the optional data member API.

A well-behaved program must test for the presence of an optional member and not assume that it is always set. Dereferencing an
unset optional member causes a run-time error.

In all supported language mappings, an optional data member's initial condition is unset if not otherwise assigned during construction. Again
using C++ as an example:

C++

CPtr ¢ = new C /1 default constructor
assert(!c->alternateNane); // not set

c = new C("xyz", true, "abc", 42); // one-shot constructor
assert (c->al t er nat eNane) ; /1 set by constructor

Optional Data Members with Default Values

You can declare a default value for optional members just as you can for required members:

Slice

class C
{
string nane;
bool active = true;
optional (2) string alternateNang;
optional (5) int overrideCode = -1,
s

An optional data member with a default value is considered to be set by default:

164 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
CPtr ¢ = new C /1 default constructor
assert(!c->alternateNane); // not set
assert (c->overri deCode); /1 set to default val ue

Each language mapping provides an API for resetting an optional data member to its unset condition.

See Also
® Classes

® User Exceptions
® Optional Values

165 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Type IDs

Interface, class and user exception Slice types have an internal type identifier, known as the type ID. The type ID is simply the fully-qualified
name of each type. For example, the type ID of the Chi | d interface in the preceding example is : : Fami | y: : Chi | dren: : Chi | d. A type
ID starts with a leading : : and is formed by starting with the global scope (: :) and forming the fully-qualified name of a type by appending
each module name in which the type is nested, and ending with the name of the type itself; the components of the type ID are separated by

The type ID of the Slice Obj ect typeis:: | ce:: Qoj ect.

Type IDs are used internally by the Ice run time as a unique identifier for each type. For example, when an exception is raised, the
marshaled form of the exception that is returned to the client is preceded by its type ID on the wire. The client-side run time first reads the
type ID and, based on that, unmarshals the remainder of the data as appropriate for the type of the exception.

Type IDs are also used by the i ce_i sA operation.

See Also

® ice_isA

166 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Operations+on+Object#OperationsonObject-ice_isA
https://doc.zeroc.com/display/Ice36/Operations+on+Object#OperationsonObject-ice_isA

Ice 3.6.4 Documentation

Operations on Object

The Obj ect interface has a number of operations. We cannot define type Obj ect in Slice because bj ect is a keyword; regardless, here
is what (part of) the definition of Obj ect would look like if it were legal:

Slice
sequence<string> Str Seq;
interface Object { /1 "Pseudo" Slice!
i denpotent void i ce_ping();
i denpot ent bool ice_ isA(string typel D);

i denpotent string ice_id();
i denmpotent StrSeq ice_ids();
11

s

Note that, apart from the illegal use of the keyword Obj ect as the interface name, the operation names all contain the i ce_ prefix. This
prefix is reserved for use by Ice and cannot clash with a user-defined operation. This means that all Slice interfaces can inherit from Obj ect
without name clashes. We discuss these built-in operations below.

On this page:
® ice_ping
® ice_isA
® ice_id
® ice_ids

i ce_ping

All interfaces support the i ce_pi ng operation. That operation is useful for debugging because it provides a basic reachability test for an
object: if the object exists and a message can successfully be dispatched to the object, i ce_pi ng simply returns without error. If the object
cannot be reached or does not exist, i ce_pi ng throws a run-time exception that provides the reason for the failure.

ice_isA

The i ce_i sA operation accepts a type identifier (such as the identifier returned by i ce_i d) and tests whether the target object supports the
specified type, returning t r ue if it does. You can use this operation to check whether a target object supports a particular type. For example,
referring to the diagram Implicit Inheritance from Object once more, assume that you are holding a proxy to a target object of type Al ar nCl o
ck. The table below illustrates the result of calling i ce_i sA on that proxy with various arguments. (We assume that all types in the Implicit
inheritance from Object diagram are defined in a module Ti nmes):

Argument Result
::1ce:: Object true
:Times: : O ock true

c:Times:: AlarnCl ock true
::Times::Radio fal se
::Times:: Radi oCl ock false
Calling i ce_i sAon a proxy denoting an object of type AlarmClock.

As expected, i ce_i sAreturns true for : : Ti mes: : Cl ock and : : Ti mes: : Al ar nCl ock and also returns true for : : | ce: : Qbj ect (becaus
e all interfaces support that type). Obviously, an Al ar nCl ock supports neither the Radi o nor the Radi oCl ock interfaces, soi ce_i sAretu

167 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-ImplicitInheritancefromObject
https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-ImplicitInheritancefromObject
https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-ImplicitInheritancefromObject

Ice 3.6.4 Documentation

rns false for these types.

ice id

The i ce_i d operation returns the type ID of the most-derived type of an interface.

ice ids

The i ce_i ds operation returns a sequence of type IDs that contains all of the type IDs supported by an interface. For example, for the
RadioClock interface in Implicit inheritance from Object, i ce_i ds returns a sequence containing the type IDs : : | ce: : Obj ect, : : Ti mes:
: O ock,::Tinmes:: Al arnCl ock, :: Ti nes: : Radi o, and : : Ti nes: : Radi oCl ock.

See Also
® Type IDs

® Interface Inheritance
® Implicit inheritance from Object

168 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-ImplicitInheritancefromObject
https://doc.zeroc.com/display/Ice36/Interface+Inheritance#InterfaceInheritance-ImplicitInheritancefromObject

Ice 3.6.4 Documentation

Local Types

In order to access certain features of the Ice run time, you must use APIs that are provided by libraries. However, instead of defining an API
that is specific to each implementation language, Ice defines its APIs in Slice using the | ocal keyword. The advantage of defining APIs in
Slice is that a single definition suffices to define the API for all possible implementation languages. The actual language-specific API is then
generated by the Slice compiler for each implementation language. Types that are provided by Ice libraries are defined using the Slice | oca
| keyword.

For example:

Slice

nmodul e I ce {
| ocal interface (bjectAdapter {
/1
b
b

Any Slice definition (not just interfaces) can have a | ocal modifier. If the | ocal modifier is present, the Slice compiler does not generate
marshaling code for the corresponding type. This means that a local type can never be accessed remotely because it cannot be transmitted
between client and server. (The Slice compiler prevents use of | ocal types in non-l ocal contexts.)

In addition, local interfaces and local classes do not inherit from | ce: : Obj ect . Instead, local interfaces and classes have their own,
completely separate inheritance hierarchy. At the root of this hierarchy is the type | ce: : Local Obj ect, as shown:

LocalObject
winterfaces

CbjectAdapter Cther local
«interfaces interfaces...

Inheritance from Local Obj ect .

Because local interfaces form a completely separate inheritance hierarchy, you cannot pass a local interface where a non-local interface is
expected, and vice-versa.

You rarely need to define local types for your own applications — the | ocal keyword exists mainly to allow definition of APIs for the Ice run
time. (Because local objects cannot be invoked remotely, there is little point for an application to define local objects; it might as well define
ordinary programming-language objects instead.) However, there is one exception to this rule: servant locators must be implemented as
local objects.

See Also

® Servant Locators

169 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to concern yourself with these. However, occasionally, it is good
to know how Slice uses naming scopes and resolves identifiers.

On this page:

® Naming Scope

® Case Sensitivity

® Qualified Names

® Names in Nested Scopes

® Introduced Identifiers

® Name Lookup Rules

® Scoping Rules for Parameters and Data Members
® Scoping Rules in Prior Ice Releases

Naming Scope

The following Slice constructs establish a naming scope:

the global (file) scope
modules

interfaces

classes

structures
exceptions
parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the same identifier for different purposes. For example:

Slice

interface Bad {
void op(int p, string p); /1 Error!
H

Because a parameter list forms a naming scope, it is illegal to use the same identifier p for different parameters. Similarly, data members,
operation names, interface and class names, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identifiers that differ not only in capitalization within a naming
scope. For example:

Slice

struct Bad {

i nt m

string M [l Error!
b

The Slice compiler also enforces consistent capitalization for identifiers. Once you have defined an identifier, you must use the same
capitalization for that identifier thereafter. For example, the following is in error:

170 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

sequence<string> StringSeq;

interface Bad {
stringSeq op(); /1 Error!
s

Note that identifiers must not differ from a Slice keyword in case only. For example, the following is in error:

Slice

i nterface Modul e { /1 Error, "nmodule" is a keyword
11
s

Qualified Names

The scope-qualification operator : : allows you to refer to a type in a non-local scope. For example:

Slice

nodul e Types {
sequence<!| ong> LongSeq;

s
nodul e MyApp {

sequence<Types: : LongSeq> Nunber Tr ee;
i

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module Types. The global scope is denoted by a leading : : , so
we could also refer to LongSeq as : : Types: : LongSeq.

The scope-qualification operator also allows you to create mutually dependent interfaces that are defined in different modules. The obvious
attempt to do this fails:

171 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

nmodul e Parents {
interface Children::Child; [// Syntax error
i nterface Mother {
Children::Child* getChild();
s
i nterface Father {
Children:: Child* getChild();
b
i

nmodul e Children {
interface Child {
Par ent s: : Mot her* get Mot her () ;
Parent s: : Fat her* get Fat her ();
H
s

This fails because it is syntactically illegal to forward-declare an interface in a different module. To make it work, we must use a reopened
module:

Slice
nodul e Children {
interface Chil d; !/l Forward decl aration
b
nodul e Parents {
i nterface Mother {
Children:: Child* getChild(); [l OK
H
i nterface Father {
Children:: Child* getChild(); /1 K
H
H
nmodul e Children { /1 Reopen nodul e
interface Child { /] Define Child
Parent s: : Mot her* get Mot her () ;
Parent s: : Fat her* get Fat her ();
b
s

While this technique works, it is probably of dubious value: mutually dependent interfaces are, by definition, tightly coupled. On the other
hand, modules are meant to be used to place related definitions into the same module, and unrelated definitions into different modules. Of
course, this begs the question: if the interfaces are so closely related that they depend on each other, why are they defined in different

172 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

modules? In the interest of clarity, you probably should avoid this construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For example, the following is legal:

Slice

nmodul e Quter ({
sequence<string> Seq;

nmodul e I nner {
sequence<short > Seq;
b
i

Within module | nner , the name Seq refers to a sequence of short values and hides the definition of Qut er :

the other definition by using explicit scope qualification, for example:

: Seq. You can still refer to

Slice
nmodul e Quter ({
sequence<string> Seq;
nmodul e I nner {
sequence<short> Seq;
struct Confusing {
Seq a; /'l Sequence of short
::Quter::Seq b; /1 Sequence of string
}
s
i

Needless to say, you should try to avoid such redefinitions — they make it harder for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other in certain situations. For example, a module named Mcannot (recursively)
contain any construct also named M The same is true for interfaces and classes, which cannot define an operation with the same name as

the enclosing interface or class. For example, the following examples are all in error:

173

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
nodul e M {
interface M{ /* ... */ }; Il Error!
interface | {
void I(); /1 Error!
b
s
nmodul e Quter ({
nmodul e I nner {
interface outer { /1l Error, even if case differs!
/1
b
b
s

The reason for this restriction is that nested types that have the same name are difficult to map into some languages. For example, C++ and
Java reserve the name of a class as the name of the constructor, so an interface | could not contain an operation named | without artificial
rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a qualified name to be anchored at the global scope. If a nested
module or type is permitted to have the same name as the name of an enclosing module, it can become impossible to generate legal code in
some cases.

In the interest of simplicity, Slice prohibits the name of a nested module or type from being the same as the name of one of its enclosing
modules.

Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; thereafter, within that naming scope, the identifier cannot change
meaning.

For example:
Slice
nmodul e M {
sequence<string> Seq;
interface Bad {
Seq opl(); /1 Seq and opl introduced here
int Seq(); /1 Error, Seq has changed neani ng
b
s

The declaration of opl uses Seq as its return type, thereby introducing Seq into the scope of interface Bad. Thereafter, Seq can only be
used as a type name that denotes a sequence of strings, so the compiler flags the declaration of the second operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

174 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

nodul e M {
sequence<string> Seq;

interface Bad {
i M:Seq opl(); // Only opl introduced here
int Seq(); Il K
b
i

In general, a fully-qualified name (one that is anchored at the global scope and, therefore, begins with a : : scope resolution operator) does
not introduce any name into the current scope. On the other hand, a qualified name that is not anchored at the global scope introduces only
the first component of the name:

Slice

nmodul e M {
sequence<string> Seq;

interface Bad {
M : Seq opl(); /1 Mand opl introduced here, but not Seq
int Seq(); Il K
b
s

Name Lookup Rules

When searching for the definition of a name that is not anchored at the global scope, the compiler first searches backward in the current
scope of a definition of the name. If it can find the name in the current scope, it uses that definition. Otherwise, the compiler successively
searches enclosing scopes for the name until it reaches the global scope. Here is an example to illustrate this:

175 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

i nterface Base {

b
b

Slice
modul e ML {
sequence<doubl e> Seq;
nmodul e M2 {
sequence<string> Seq; /1 OK, hides ::M.:: Seq

Seq opl(); /1 Returns sequence of string
b
s
modul e MB {
interface Derived extends M::Base {
Seq op2(); /1 Returns sequence of double
b
sequence<bool > Seq; /1 OK, hides ::M.:: Seq
interface | {
Seq op(); /'l Returns sequence of boo
3
b
interface | {
Seq op(); /'l Returns sequence of double

Note that M2: : Deri ved: : op2 returns a sequence of doubl e, even though ML: : Base: : op1l returns a sequence of st ri ng. That is, the
meaning of a type in a base interface is irrelevant to determining its meaning in a derived interface — the compiler always searches for a
definition only in the current scope and enclosing scopes, and never takes the meaning of a name from a base interface or class.

Scoping Rules for Parameters and Data Members

A Slice operation creates a new naming scope in which all parameter names must be unique:

Slice
interface | {
void opl(string p, int P); /1l Error, differs only in case
void op2(int n, out int n); /1 Error, duplicate
voi d op3(string s, int i); /1 K
b

It's legal for parameters to reuse the names of symbols in enclosing scopes, including the name of the operation, class, interface or module:

176

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
nodul e M {
sequence<string> Seq;
interface | {
string query(string query); /1 OK to reuse operation nane
void opl(int I); /1 OK to reuse nane of enclosing
type
voi d op2(Seq Seq); /1l OKto reuse type name
void op3(int M; // OK to reuse nodul e nane
s
s

The rules for data members are similar to those of parameters:

® Structures
Member names must be unique within the structure.
® Exceptions
Member names must be unique within the exception, including any members inherited from base exceptions.
® Classes
Member names must be unique within the class, including any members inherited from base classes. Members must not duplicate
the names of operations defined by the class or inherited by any base classes or interfaces.

As for parameters, data members can reuse the names of symbols in enclosing scopes. The examples below illustrate these rules:

177 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
nodul e M {

struct S {
int i;
string s; /1l OKto reuse nanme of enclosing type
long I; /1 Error, differs only in case
bool M /[l OK to reuse nodul e nane

s

interface | {
void op();
s

cl ass Base {
string nane;

s

cl ass C extends Base inplenments | {
S S /[l OKto reuse type name
byte c; /1 OK to reuse nane of enclosing type
string op; /1 Error, duplicates inherited |I::op

string Nane; // Error, differs only in case from Base:: nane

H

exception ErrorBase {
string reason;

H

exception Error extends ErrorBase {
long error; // OKto reuse nane of enclosing type
int reason; [// Error, duplicates inherited ErrorBase::reason

H

Scoping Rules in Prior Ice Releases

The scoping rules for parameters and data members were more restrictive in Ice 3.5 and earlier releases:

® A data member cannot have the same name as its enclosing type

178 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
class C{
int c; // Error
b
® A data member cannot have the same name as its type
Slice
nodul e M {
sequence<string> Seq;
struct S {

Seq Seq; // Error, use ::M:Seq as the type instead
b
i

You can work around this limitation by using the fully-qualified type name.

® A parameter cannot have the same name as its operation

Slice

void op(int op); // Error

® A parameter cannot have the same name as its type

Slice

nmodul e M {
sequence<string> Seq;
interface | {
void op(Seq Seq); // Error, use ::M:Seq as the type
i nst ead
s
s

You can work around this limitation by using the fully-qualified type name.

You must adhere to these more-restrictive rules if your Slice definitions need to maintain backward compatibility with Ice 3.5 or
earlier.

See Also

179 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

® |exical Rules

180 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Metadata

Slice has the concept of a metadata directive. For example:

Slice

["java:type:java.util.LinkedList<lnteger>"] sequence<int> |ntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata directives appear in a pair of square brackets and contain one
or more string literals separated by commas. For example, the following is a syntactically valid metadata directive containing two strings:

Slice

["a", "b"] interface Exanple {};

Metadata directives are not part of the Slice language per se: the presence of a metadata directive has no effect on the client-server
contract, that is, metadata directives do not change the Slice type system in any way. Instead, metadata directives are targeted at specific
back-ends, such as the code generator for a particular language mapping. In the preceding example, the j ava: prefix indicates that the
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that does not change the Slice types being defined, but somehow
influences how the compiler will generate code for these definitions. For example, a metadata directive j ava: t ype: j ava. uti | . Li nkedL
i st <T> instructs the Java code generator to map a sequence to a linked list instead of an array (which is the default).

Metadata directives are also used to create skeletons that support Asynchronous Method Dispatch (AMD).

Apart from metadata directives that are attached to a specific definition, there are also global metadata directives. For example:

Slice

[["]ava: package: com acrme"]]

Note that a global metadata directive is enclosed by double square brackets, whereas a local metadata directive (one that is attached to a
specific definition) is enclosed by single square brackets. Global metadata directives are used to pass instructions that affect the entire
compilation unit. For example, the preceding metadata directive instructs the Java code generator to generate the contents of the source file
into the Java package com acne. Global metadata directives must precede any definitions in a file (but can appear following any #i ncl ude
directives).

We discuss specific metadata directives in the relevant chapters to which they apply.

You can find a summary of all metadata directives in Slice Metadata Directives.

See Also

® Slice Metadata Directives

181 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Serializable Objects

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as operation parameters. The Ice run time automatically
serializes and deserializes the objects as part of an invocation. This mechanism allows you to transmit Java and CLR objects that do not
have a corresponding Slice definition.

On this page:
® The serializable Metadata Directive

® Architectural Implications

The seri al i zabl e Metadata Directive

To enable serialization, the parameter type must be a byte sequence with appropriate metadata. For example:

Slice

["java: serializabl e: SonePackage. JavaCd ass"]
sequence<byt e> JavaQbj ;

i nterface JavaExanpl e {
voi d sendJavaObj (JavaObj 0);

s

["clr:serializabl e: SomeNanespace. CLRC ass"]
sequence<byte> CLROj ;

i nterface CLRExanpl e {
voi d sendCLROhj (CLROhj 0);
i

The j ava: seri al i zabl e metadata indicates that the corresponding byte sequence holds a Java serializable type named SonePackage.
Javad ass. Your program must provide an implementation of this class; the class must implement j ava. i 0. Seri al i zabl e.

Similarly, the cl r: seri al i zabl e metadata indicates that the corresponding byte sequences holds a CLR serializable type named SonmeNa
mespace. CLRA ass. Your program must provide an implementation of this class; the class must be marked with the Seri al i zabl e attrib
ute.

Architectural Implications

The seri al i zabl e metadata directive permits you to transmit arbitrary Java and CLR objects across the network without the need to
define corresponding Slice classes or structures. This is mainly a convenience feature: you could achieve the same thing by using ordinary
Slice byte sequences and explicitly serializing your Java or CLR objects into byte sequences at the sending end, and deserializing them at
the receiving end. The seri al i zabl e metadata conveniently takes care of these chores for you and so is simpler to use.

Despite its convenience, you should use this feature with caution because it destroys language transparency. For example, a serialized Java
object is useless to a C++ server. All the C++ server can do with such an object is to pass it on to some other process as a byte sequence.
(Of course, if that receiving process is a Java process, it can deserialize the byte sequence.)

Further, similar to Slice classes with methods, a serialized object can be deserialized only if client and server agree on the definition of the
serialized class. In Java, this is enforced by the seri al Ver si onUl Dfield of each instance; in the CLR, client and server must reference
identical assembly versions. This creates much tighter coupling of client and server than exchanging Slice-defined types.

And, of course, if you build a system that relies on, for example, the exchange of serialized Java objects and you later find that you need to
add C++ or C# components to the system, these components cannot do anything with the serialized Java objects other than pass them
around as a blob of bytes.

182 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

So, if you do use these features, be clear that this implies tighter coupling between client and server, and that it creates additional library
versioning and distribution issues because all parts of the system must agree on the implementation of the serialized objects.

See Also
® Serializable Objects in Java

® Serializable Objects in C#
® Architectural Implications of Classes

183 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a Slice definition. For example:

Slice

interface Exampl e {

["deprecate: someCperation() has been deprecated, use alternativeQpe
ration() instead."]

voi d soneQperation();

voi d al ternativeQperation();

s

The [" depr ecat e"] metadata directive causes the compiler to emit code that generates a warning if you compile application code that
uses a deprecated feature. This is useful if you want to remove a feature from a Slice definition but do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and use [" depr ecat e"], the Slice compilers insert a default
message into the generated code.

You can apply the [" depr ecat e"] metadata directive to Slice constructs other than operations (for example, a structure or sequence
definition).

See Also

® Generating Slice Documentation

184 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping, as shown below:

Language Compiler Freeze Compiler
C++ slice2cpp slice2freeze
Java slice2java slice2freezej
JavaScript slice2js

C# slice2cs

Objective-C = sl i ce2obj ¢

Python slice2py

Ruby slice2rb

PHP sl i ce2php

The Slice compilers.

The compilers share a similar command-line syntax:

<conpi |l er-nane> [options] file...

Regardless of which compiler you use, a number of command-line options are common to the compilers for any language mapping. (See the
appropriate language mapping chapter for options that are specific to a particular language mapping.) The common command-line options
are:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAME
Defines the preprocessor symbol NAME.

* - DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.

* - UNAMVE
Undefines the preprocessor symbol NAME.

®* -IDR
Add the directory DI Rto the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --ice
Permit use of the reserved | ce prefix in Slice identifiers. This is useful when building Ice itself, or when compiling a Slice file that
includes another Slice file with Ice-prefixed identifiers, such as | ce/ Bui | t i nSequences. i ce.

® --underscore
Permit use of underscores in Slice identifiers.

185 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Code+Generation+in+Python#CodeGenerationinPython-slice2py
https://doc.zeroc.com/display/Ice36/Code+Generation+in+Ruby#CodeGenerationinRuby-slice2rb

Ice 3.6.4 Documentation

- -depend

Print dependency information to standard output by default, or to the file specified by the - - depend- fi | e option. No code is
generated when this option is specified. The output includes the complete list of Slice files that the input Slice files depend on
through direct or indirect inclusion; this output may include other files depending on the target programming language. The Ice for
C++ build system uses the script conf i g/ makedepend. py to process and include this output in Makefi | es.

- - depend- xm

Print dependency information in XML format to standard output by default, or to the file specified by the - - depend- fi | e option. No
code is generated when this option is specified. The output consists of the complete list of Slice files that the input Slice files depend
on through direct or indirect inclusion, and is identical will all Slice compilers.

--depend-file FILE

Directs dependency information to the specified file. The output format depends on whether - - depend or - - depend- xni is also
specified.

--validate

Checks the provided command-line options for correctness, and does not generate any code.

The Slice compilers permit you to compile more than a single source file, so you can compile several Slice definitions at once, for example:

186

slice2cpp -1. filel.ice file2.ice file3.ice

See Also

® Slice Compilation

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice Checksums

As distributed applications evolve, developers and system administrators must be careful to ensure that deployed components are using the
same client-server contract. Unfortunately, mistakes do happen, and it is not always readily apparent when they do.

To minimize the chances of this situation, the Slice compilers support an option that generates checksums for Slice definitions, thereby
enabling two peers to verify that they share an identical client-server contract. The checksum for a Slice definition includes details such as
parameter and member names and the order in which operations are defined, but ignores information that is not relevant to the client-server
contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice type identifiers to checksums. A server typically supplies an
operation that returns its checksum dictionary for the client to compare with its local version, at which point the client can take action if it
discovers a mismatch.

The dictionary type is defined in the file | ce/ Sl i ceChecksunDi ct . i ce as follows:

Slice

nodul e Ice {
di ctionary<string, string> SliceChecksunDict;

H

This type can be incorporated into an application's Slice definitions like this:

Slice

#i ncl ude <lce/ SliceChecksunDict.ice>

interface MyServer {
i denpotent Ice::SliceChecksunDi ct get SliceChecksuns();
/11

H

The key of each element in the dictionary is a Slice type ID, and the value is the checksum of that type.

For more information on generating and using Slice checksums, see the appropriate language mapping chapter.

See Also

®* Type IDs

187 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Generating Slice Documentation

On this page:

® Generating Slice Documentation
® Documentation Comments
® Hyperlinks
® Explicit Cross-References
® Markup for Operations
® General HTML Markup
® Using slice2html

Generating Slice Documentation

The Slice API reference documents all of the Slice definitions for Ice and its services by extracting comments from their Slice files. You can
generate HTML documentation from your own Slice definitions using sl i ce2ht ml . As an example of the comment syntax supported by sl i
ce2ht m , here is the definition of | ce: : Current:

Slice

/**

*

* Information about the current nethod invocation for servers. Each

* operation on the server has a <tt>Current</tt> as its inplicit fina
* paraneter. <tt>Current</tt> is nostly used for Ice services. Most

* applications ignore this paraneter.

*

**/

ocal struct Current ({
/**

* The obj ect adapter.

**/

bj ect Adapt er adapter;

/**
* |Informati on about the connection over which the current

* met hod i nvocation was received. |f the invocation is direct

* due to collocation optimzation, this value is set to null
**/

Connecti on con;

/**

* The Ice object identity.

**/
Identity id;
/**

* The facet.

***/

string facet;

/**

* The operation nane.

188 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

**/

string operation;

/**

* The node of the operation.
**/

Oper ati onMbde node;

/**

* The request context, as received fromthe client.
**/

Cont ext ctx;

/**

* The request id unless oneway (0) or collocated (-1).
**/

i nt requestld;

/**

* The encodi ng version used to encode the input and out put
par anet ers.

**/

189 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

| ce:: Encodi ngVer si on encodi ng;

H

If you look at the comments, you will see these reflected in the documentation for | ce: : Cur r ent in the online Slice API reference.

Documentation Comments

A documentation comment:

® starts with / **
® ends with **/

Such a comment can precede any Slice construct, such as a module, interface, structure, operation, and so on. Within a documentation
comment, you can either start each line with a *, or you can leave the beginning of the line blank — sl i ce2ht m can handle either
convention:

Slice

/**

*

* This is a docunentati on comment for which every |ine
* starts with a '*' character.

**/

/**

This is a docunentation coment w thout a | eading '*'
for each line. Either style of comment is fine.

**/

The first sentence of the documentation comment for a Slice construct should be a summary sentence. sl i ce2ht ml generates an index of
all Slice constructs; the first sentence of the comments for each Slice construct is ued as a summary in that index.

Hyperlinks
Any Slice identifier enclosed in { @i nk ...} is presented as a hyperlink in code font. For example:
Slice
/ * %

* An enpty {@ink nane} denotes a null object.

**/

This generates a hyperlink for the nanme markup that points at the definition of the corresponding Slice symbol. (The symbol can denote any
Slice construct, such as a type, interface, parameter, or structure member.)

Explicit Cross-References

The directive @ee is recognized by sl i ce2ht ml . Where it appears, the generated HTML contains a separate section titled "See Also",

190 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

followed by a list of Slice identifiers. For example:

Slice

/**

* The object adapter, which is responsible for receiving requests
* from endpoints, and for mappi ng between servants, identities,
* and proxies.

* @ee Conmuni cat or
* @ee Servant Locat or

**/

The Slice identifiers are listed in the corresponding "See Also" section as hyperlinks in code font.

Markup for Operations

There are three directives specifically to document Slice operations: @ar am @ et ur n, and @ hr ows. For example:

Slice

/**

*

Look for an itemwith the specified
* primary and secondary key.

* @aramp The primary search key.
* @arams The secondary search key.
* @eturn The itemthat matches the specified keys.

* @hrows NotFound Raised if no item natches the specified keys.
**/

Itemfindltem(Key p, Key s) throws NotFound;

sl i ce2ht m generates separate "Parameters", "Return Value", and "Exceptions" sections for these directives. Parameters are listed in the
same order as they appear in the comments. (For clarity, that order should match the order of declaration of parameters for the
corresponding operation.)

General HTML Markup

A documentation comment can contain any markup that is permitted by HTML in that place. For example, you can create separate
paragraphs with <P> and </ P> elements:

191 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

/**

* This is a commrent for sone Slice construct. </p>

*

* <p>This comment appears in a separate paragraph.
**/

Note that you must neither begin a documentation comment with a <p> element nor end it with a </ p> element because, in the generated
HTML, documentation comments are already surrounded by <p> and </ p> elements.

There are various other ways to create markup — for example, you can use <t abl e> or elements. Please see the HTML specification
for details.

Using sl i ce2htm

slice2ht m uses the following syntax:

slice2htm [options] slice_file...

If you have cross-references that span Slice files, you must compile all of the Slice files with a single invocation of sl i ce2ht n .
The command supports the following options:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAMVE
Defines the preprocessor symbol NAME.

* - DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.

* - UNAME
Undefines the preprocessor symbol {NAVE.

®* -IDR
Add the directory DI Rto the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --ice
Permit use of the normally reserved prefix | ce for identifiers. Use this option only when compiling the source code for the Ice run
time.

® --underscore
Permit use of underscores in Slice identifiers.

® --hdr FILE
Prepend FI LE to each generated HTML file (except for _si ndex. ht m). This allows you to replace the HTML header and other

192 Copyright 2017, ZeroC, Inc.

http://www.w3.org/TR/html401

193

Ice 3.6.4 Documentation

preamble information with a custom version, so you can connect style sheets to the generated pages. The specified file must include
the <body> tag (but need not end with a <body> tag). FI LE is expected to contain the string Tl TLE on a line by itself, starting in
column one. slice2html replaces the Tl TLE string with the fully-scoped name of the Slice symbol that is documented on the
corresponding page.

--ftr FILE
Append FI LE to each generated HTML file (except for _si ndex. ht m). This allows you to add, for example, a custom footer to
each generated page. FI LE must end with a </ body> tag.

--indexhdr FI LE

slice2ht m generates a file _si ndex. ht m that contains a table of contents of all Slice symbols that hyperlink to the
corresponding page. This option allows you to replace the standard header with a custom header, for example, to attach a
JavaScript. The specified file must include the <body> tag (but need not end with a <body> tag). The default value is the setting of
- - hdr (if any).

--indexftr FILE
Append FI LE to the generated si ndex. ht ml page. This allows you to add, for example, a custom footer to the table of contents,
or to invoke a JavaScript. _FI LE is must end with a </ body> tag. The default value is the setting of - - f t r (if any).

--image-dir DIR

With this option, sl i ce2ht ml looks in the specified directory for images to use for the generated navigation hyperlinks. (Without
this option, text links are used instead.) Please see the generated HTML for the names of the various image files. (They can easily
be found by looking for i ng elements.)

--logo-url URL
Use the specified URL as a hyperlink for the company logo that is added to each page (if - - i mage- di r is specified). The company
logo is expected to be in <i mage_di r>/1 ogo. gi f.

--search ACTI ON
If this option is specified, the generated pages contain a search box that allows you to connect the generated pages to a search
engine. On pressing the "Search" button, the specified ACTI ONis carried out.

--index NUM

sl i ce2ht ml generates sub-indexes for various Slice symbols. This option controls how many entries must be present before a
sub-index is generated. For example, if NUMis set to 3, a sub-index will be generated only if there are three or more symbols that
appear in that index. The default settings is 1, meaning that a sub-index is always generated. To disable sub-indexes entirely, set NU
Mto 0.

--sunmmary NUM
If this option is set, summary sentences that exceed NUMcharacters generate a warning.

See Also

® Slice API reference
® HTML specification

Copyright 2017, ZeroC, Inc.

http://www.w3.org/TR/html401

Ice 3.6.4 Documentation

Slice Keywords

The following identifiers are Slice keywords:

bool ext ends Local Obj ect string
byt e fal se I ong struct
cl ass f1 oat nodul e t hr ows
const i dempot ent Obj ect true
dictionary inplenents optional voi d
doubl e int out

enum interface sequence

exception |ocal short

Keywords must be capitalized as shown.

See Also

® |exical Rules

194 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice Metadata Directives

On this page:

General Metadata Directives
Metadata Directives for C++
Metadata Directives for Java
Metadata Directives for C#
Metadata Directives for .NET
Metadata Directives for Objective-C
Metadata Directives for Python

[]
[]
[]
[]
[]
[]
[]
® Metadata Directives for Freeze

General Metadata Directives

amd

This directive applies to interfaces, classes, and individual operations. It enables code generation for asynchronous method dispatch. (See
the relevant language mapping chapter for details.)

deprecate

This directive allows you to emit a deprecation warning for Slice constructs.

f or mat

This directive defines the encoding format used for any classes or exceptions marshaled as the arguments or results of an operation. The
tag can be applied to an interface, which affects all of its operations, or to individual operations. Legal values for the tag are f or mat : sl i ce
d, for mat : conpact, and f or mat : def aul t . A tag specified for an operation overrides any setting applied to its enclosing interface. The |
ce. Defaul t. SlicedFormat property defines the behavior when no tag is present.

preserve-slice

This directive applies to classes and exceptions, allowing an intermediary to forward an instance of the annotated type, or any of its
subtypes, with all of its slices intact. Operations that transfer such types must be annotated with f or mat : sl i ced. It is not necessary to
repeat the pr eser ve- sl i ce tag on derived types, but you may wish to do so for documentation purposes.

protect ed

This directive applies to data members of classes and changes code generation to make these members protected. See class mapping of
the relevant language mapping chapter for more information.

User Excepti on

This directive applies only to operations on local interfaces. The metadata directive indicates that the operation can throw any user
exception, regardless of its specific definition. (This directive is used for the | ocat e and f i ni shed operations on servant locators, which
can throw any user exception.)

Metadata Directives for C++

cpp: array and cpp: range

These directives apply to sequences. They direct the code generator to create zero-copy APIs for passing sequences as parameters.

195 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716643#Ice.Default.*-Ice.Default.SlicedFormat
https://doc.zeroc.com/pages/viewpage.action?pageId=16716643#Ice.Default.*-Ice.Default.SlicedFormat
https://doc.zeroc.com/display/Ice36/Slicing+Values+and+Exceptions#SlicingValuesandExceptions-preserve
https://doc.zeroc.com/pages/viewpage.action?pageId=16716050#C++MappingforSequences-CustomSequenceMappinginC++

Ice 3.6.4 Documentation

cpp: cl ass

This directive applies to structures. It directs the code generator to create a C++ class (instead of a C++ structure) to represent a Slice
structure.

cpp: conpar abl e

This directive applies to structures. It directs the code generator to generate comparison operators for a structure regardless of whether it
qualifies as a legal dictionary key type.

cpp: const

This directive applies to operations. It directs the code generator to create a const pure virtual member function for the skeleton class.

cpp: header - ext

This global directive allows you to use a file extension for C++ header files other than the default . h extension.

cpp:ice_print
This directive applies to exceptions. It directs the code generator to declare (but not implement) an i ce_pri nt member function that

overrides the i ce_pri nt virtual function in | ce: : Except i on. The application must provide the implementation of this i ce_pri nt functio
n.

cpp:include

This global directive allows you inject additional #include directives into the generated code. This is useful for custom types.

cpp:type: c++-type

This directive applies to sequences and dictionaries. It directs the code generator to map the Slice type or parameter to the provided C++
type.

cpp: type:stringandcpp:type: wstring

These directives apply to data members of type string as well as to containers, such as structures, classes, exceptions, and modules. String
members map by default to st d: : st ri ng. You can use the cpp: t ype: wst ri ng metadata to cause a string data member (or all string

data members in a structure, class or exception) to map to st d: : wst ri ng instead. Use the cpp: t ype: st ri ng metadata to force string
members to use the default mapping regardless of any enclosing metadata.

196 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716064#Server-SideC++MappingforInterfaces-SkeletonClassesinC++
https://doc.zeroc.com/pages/viewpage.action?pageId=16716050#C++MappingforSequences-CustomSequenceMappinginC++
https://doc.zeroc.com/pages/viewpage.action?pageId=16716050#C++MappingforSequences-CustomSequenceMappinginC++
https://doc.zeroc.com/pages/viewpage.action?pageId=16716047#C++MappingforBuilt-InTypes-wstring

Ice 3.6.4 Documentation

Slice

["cpp:type:wstring"]
module A{ // Al string nenbers in this nodule nmap by default to
std::wstring
struct Structl {
string s; // Maps to std::wstring
b
struct Struct2 {
["cpp:type:string"] string s; // Maps to std::string
}

["cpp:type:string"] // Al string nmenbers in this nodul e map by
default to std::string
nmodul e I nner {
struct Struct4 {
string s; // Maps to std::string
b

["cpp:type:wstring”] // Al string nenbers of Struct4 map by
default to std::wstring
struct Struct3 {
string s; // Maps to std::wstring

cpp: Vi ewtype: c++-vi ewtype

This directive applies to string, sequence and dictionary parameters. It directs the code generator to map this parameter to the provided C++
type when this parameter does not need to hold any memory, for example when mapping an in-parameter to a proxy function.

cpp: virtual

This directive applies to classes. If the directive is present and a class has base classes, the generated C++ class derives virtually from its
bases; without this directive, slice2cpp generates the class so it derives non-virtually from its bases.

This directive is useful if you use Slice classes as servants and want to inherit the implementation of operations in the base class in the
derived class. For example:

197 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

cl ass Base {
i nt baseOp();

s

["cpp:virtual "]
cl ass Derived extends Base {
string derivedOp();

}s

The metadata directive causes slice2cpp to generate the class definition for Der i ved using virtual inheritance:

C++

class Base : virtual public Ice:: oject {
/1

s
class Derived : virtual public Base {

/1
H

This allows you to reuse the implementation of baseQp in the servant for Der i ved using ladder inheritance:

C++

cl ass Basel : public virtual Base {
Ice::Int baseOp(const lce::Currentg&)
11

H

class Derivedl : public virtual Derived, public virtual Basel ({
/'l Re-use inherited baseOp()

H

Note that, if you have data member in classes and use virtual inheritance, you need to take care to correctly call base class constructors if
you implement your own one-shot constructor. For example:

198 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

cl ass Base {
i nt baselnt;

s

cl ass Derived extends Base {
int derivedlnt;

s

The generated one-shot constructor for Der i ved initializes both basel nt and deri vedl nt:

C++

Derived: : Derived(lce::Int __ice_baselnt, Ice::Int __ice_derivedlnt)
M : Base(__ice_baselnt),
derivedlnt(__ice_derivedlnt)

If you derive your own class from Der i ved and add a one-shot constructor to your class, you must explicitly call the constructor of all the
base classes, including Base. Failure to call the Base constructor will result in Base being default-constructed instead of getting a defined
value. For example:

C++

class Derivedl : public virtual Derived {
publi c:
Derivedl (int baselnt, int derivedlnt, const string& s)
Base(basel nt), Derived(baselnt, derivedint), _s(s)

private:
string _s;

b

This code correctly initializes the basel nt member of the Base part of the class. Note that the following does not work as intended and
leaves the Base part default-constructed (meaning that basel nt is not initialized):

199 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

class Derivedl : public virtual Derived {
publi c:
Derivedl (int baselnt, int derivedlnt, const string& s)
Derived(baselnt, derivedint), _s(s)

{
I/ WRONG Base::baselnt is not initialized.
}
private:
string _s;

H

Metadata Directives for Java

j ava: buf fer

This directive applies to sequences of certain primitive types. It directs the translator to map the sequence to a subclass of j ava. ni o. Buf f
er.

j ava: get set

This directive applies to data members and structures, classes, and exceptions. It adds accessor and modifier methods (JavaBean methods)
for data members.

j ava: opti onal

This directive forces optional output parameters to use the optional mapping instead of the default required mapping in servants.

j ava: package

This global directive instructs the code generator to place the generated classes into a specific package.

java:serializable

This directive allows you to use Ice to transmit serializable Java classes as hative objects, without having to define corresponding Slice

definitions for these classes.

j ava: serial Versi onUl D

This directive overrides the default (generated) value of seri al Ver si onUl Dfor a Slice type.

java:type

This directive allows you to use custom types for sequences and dictionaries.

Metadata Directives for C#

200 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaBeanMapping
https://doc.zeroc.com/display/Ice36/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaPackages
https://doc.zeroc.com/display/Ice36/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-OverridingserialVersionUID
https://doc.zeroc.com/display/Ice36/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-CustomTypesinJava

Ice 3.6.4 Documentation

Note that C# (and other Common Language Runtime languages) are also affected by metadata with a cl r : prefix. (See Metadata Directives
for .NET.)

cs:attribute

This directive can be used both as a global directive and as directive for specific Slice constructs. It injects C# attribute definitions into the
generated code. (See C-Sharp Specific Metadata Directives.)

Metadata Directives for .NET

clr:class

This directive applies to Slice structures. It directs the code generator to emit a C# class instead of a structure.

clr:generic:List,clr:generic:LinkedList,clr:generic: Queue and cl r: generic: St ack

These directives apply to sequences and map them to the specified sequence type.

clr:generic: SortedDictionary

This directive applies to dictionaries and maps them to Sor t edDi cti onary.

clr:generic

This directive applies to sequences and allows you map them to custom types.

clr:inplenments:type

This directive adds the specified base type to the generated code for a Slice structure, class or interface. For example, Ice defines the Corm
uni cat or interface as shown below:

Slice

["clr:inplements: System | D sposabl e"]
| ocal interface Communicator { ... };

Consequently, the generated C# interface | ce. Cormuni cat or implements | Di sposabl e.

Every Slice-generated C# source file defines two namespace aliases:

using _System = gl obal :: System
using _Mcrosoft = global::Mcrosoft;

We recommend using these aliases if your metadata refers to the Syst emor M cr osof t hamespaces.

clr:property

This directive applies to Slice structures and classes. It directs the code generator to create C# property definitions for data members.

clr:serializable

This directive allows you to use Ice to transmit serializable CLR classes as native objects, without having to define corresponding Slice

201 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/C-Sharp+Mapping+for+Structures#C-SharpMappingforStructures-ClassMappingforStructuresinC#
https://doc.zeroc.com/display/Ice36/C-Sharp+Mapping+for+Structures#C-SharpMappingforStructures-PropertyMappingforStructuresinC#

Ice 3.6.4 Documentation

definitions for these classes.

Metadata Directives for Objective-C

obj c: prefix

This directive applies to modules and changes the default mapping for modules to use a specified prefix.
Metadata Directives for Python

pyt hon: package
This global directive instructs the code generator to place the generated code into a specified Python package

pyt hon: seq: def aul t, pyt hon: seq: | i st and pyt hon: seq: tupl e

These directives allow you to change the mapping for Slice sequences.
Metadata Directives for Freeze

freeze:readand freeze:wite

These directives inform a Freeze evictor whether an operation updates the state of an object, so the evictor knows whether it must save an

object before evicting it.

See Also

®* Metadata

202

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Code+Generation+in+Python#CodeGenerationinPython-GeneratingPackagesinPython
https://doc.zeroc.com/display/Ice36/Python+Mapping+for+Sequences#PythonMappingforSequences-CustomizingtheSequenceMappinginPython
https://doc.zeroc.com/display/Ice36/Freeze+Evictor+Concepts#FreezeEvictorConcepts-DetectingUpdatestoPersistentState

Ice 3.6.4 Documentation

Slice for a Simple File System

For this manual, we use a file system application to illustrate various aspects of Ice. Throughout, we progressively improve and modify the
application such that it evolves into an application that is realistic and illustrates the architectural and coding aspects of Ice. This allows us to
explore the capabilities of the platform to a realistic degree of complexity without overwhelming you with an inordinate amount of detail early
on.

In this section:

® File System Application outlines the file system functionality
® Slice Definitions for the File System develops the data types and interfaces that are required for the file system
® Complete Definition presents the complete Slice definition for the application.

File System Application

Our file system application implements a simple hierarchical file system, similar to the file systems we find in Windows or Unix. To keep code
examples to manageable size, we ignore many aspects of a real file system, such as ownership, permissions, symbolic links, and a number
of other features. However, we build enough functionality to illustrate how you could implement a fully-featured file system, and we pay
attention to things such as performance and scalability. In this way, we can create an application that presents us with real-world complexity
without getting buried in large amounts of code.

Our file system consists of directories and files. Directories are containers that can contain either directories or files, meaning that the file
system is hierarchical. A dedicated directory is at the root of the file system. Each directory and file has a name. Files and directories with a
common parent directory must have different names (but files and directories with different parent directories can have the same name). In
other words, directories form a haming scope, and entries with a single directory must have unique hames. Directories allow you to list their
contents.

For now, we do not have a concept of pathnames, or the creation and destruction of files and directories. Instead, the server provides a fixed
number of directories and files. (We will address the creation and destruction of files and directories in Object Life Cycle.)

Files can be read and written but, for now, reading and writing always replace the entire contents of a file; it is impossible to read or write
only parts of a file.

Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing interfaces for the system. Files and directories have something
in common: they have a name and both files and directories can be contained in directories. This suggests a design that uses a base type
that provides the common functionality, and derived types that provide the functionality specific to directories and files, as shown:

MNode
<<interface>>

£

File Dicticnary
<Cinterfaces> Cinterfaces>

Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

203 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

i nterface Node {
11

s

interface Fil e extends Node {
/11

s

interface Directory extends Node {
11

H

Next, we need to think about what operations should be provided by each interface. Seeing that directories and files have names, we can
add an operation to obtain the name of a directory or file to the Node base interface:

Slice

i nterface Node {
i dempotent string name();

s

The Fi | e interface provides operations to read and write a file. For simplicity, we limit ourselves to text files and we assume that r ead opera
tions never fail and that only wr i t e operations can encounter error conditions. This leads to the following definitions:

Slice

exception GenericError {
string reason;

sequence<string> Lines;

interface File extends Node {
i dempot ent Lines read();
i denpotent void wite (Lines text) throws GenericError;

H

Note that r ead and wr i t e are marked idempotent because either operation can safely be invoked with the same parameter value twice in a
row: the net result of doing so is the same has having (successfully) called the operation only once.

The wr i t e operation can raise an exception of type Gener i cErr or . The exception contains a single r eason data member, of type stri n
g. Ifawrit e operation fails for some reason (such as running out of file system space), the operation throws a Generi cEr r or exception,
with an explanation of the cause of the failure provided in the r eason data member.

Directories provide an operation to list their contents. Because directories can contain both directories and files, we take advantage of the
polymorphism provided by the Node base interface:

204 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

sequence<Node*> NodeSeq

interface Directory extends Node {
i dempot ent NodeSeq list();

b

The NodeSeq sequence contains elements of type Node* . Because Node is a base interface of both Di rect ory and Fi | e, the NodeSeq s
eqguence can contain proxies of either type. (Obviously, the receiver of a NodeSeq must down-cast each element to either Fi | e or Di rect o
ry in order to get at the operations provided by the derived interfaces; only the nane operation in the Node base interface can be invoked
directly, without doing a down-cast first. Note that, because the elements of NodeSeq are of type Node* (not Node), we are using
pass-by-reference semantics: the values returned by the | i st operation are proxies that each point to a remote node on the server.

These definitions are sufficient to build a simple (but functional) file system. Obviously, there are still some unanswered questions, such as
how a client obtains the proxy for the root directory. We will address these questions in the relevant implementation chapter.

Complete Definition

We wrap our definitions in a module, resulting in the final definition as follows:

Slice

nodul e Fil esystem {
i nterface Node {
i denpotent string nane();

H

exception GenericError {
string reason;

sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denmpotent void wite(Lines text) throws GenericError

b
sequence<Node*> NodeSeq

interface Directory extends Node {
i denmpot ent NodeSeq list();
b

See Also

® Object Life Cycle

205 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

206 Copyright 2017, ZeroC, Inc.

207

Language Mappings

Topics

C++ Mapping
C-Sharp Mapping
Java Mapping
JavaScript Mapping
Objective-C Mapping
PHP Mapping
Python Mapping
Ruby Mapping

Ice 3.6.4 Documentation

Copyright 2017, ZeroC, Inc.

Topics

208

Ice 3.6.4 Documentation

C++ Mapping

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
Customizing the C++ Mapping
Version Information in C++
slice2cpp Command-Line Options
C++ Strings and Character Encoding
The C++ Utility Library

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Client-Side Slice-to-C++ Mapping

The client-side Slice-to-C++ mapping defines how Slice data types are translated to C++ types, and how clients invoke operations, pass
parameters, and handle errors. Much of the C++ mapping is intuitive. For example, Slice sequences map to STL vectors, so there is
essentially nothing new you have to learn in order to use Slice sequences in C++.

The rules that make up the C++ mapping are simple and regular. In particular, the mapping is free from the potential pitfalls of memory
management: all types are self-managed and automatically clean up when instances go out of scope. This means that you cannot
accidentally introduce a memory leak by, for example, ignoring the return value of an operation invocation or forgetting to deallocate memory
that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting mechanism for classes is interlocked against parallel access, so
reference counts cannot be corrupted if a class instance is shared among a number of threads. Obviously, you must still synchronize access
to data from different threads. For example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the
sequence while another thread is iterating over the sequence. However, you only need to concern yourself with concurrent access to your
own data — the Ice run time itself is fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely
can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for exceptions, interfaces, and operations in
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the C++ mapping, you should need no more than the Slice definition of your application and knowledge of the C++
mapping rules. In particular, looking through the generated header files in order to discern how to use the C++ mapping is likely to
be confusing because the header files are not necessarily meant for human consumption and, occasionally, contain various cryptic
constructs to deal with operating system and compiler idiosyncrasies. Of course, occasionally, you may want to refer to a header
file to confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to write
your client-side code.

The | ce Namespace

All of the APIs for the Ice run time are nested in the | ce namespace, to avoid clashes with definitions for other libraries or
applications. Some of the contents of the | ce namespace are generated from Slice definitions; other parts of the | ce namespace
provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally cover the contents of
the | ce namespace throughout the remainder of the manual.

Topics

C++ Mapping for Identifiers

C++ Mapping for Modules

C++ Mapping for Built-In Types

C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Sequences

C++ Mapping for Dictionaries

C++ Mapping for Constants

C++ Mapping for Exceptions

C++ Mapping for Interfaces

C++ Mapping for Operations

C++ Mapping for Optional Values

C++ Mapping for Classes

Smart Pointers for Classes
Asynchronous Method Invocation (AMI) in C++
Using Slice Checksums in C++
Example of a File System Client in C++

209 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Identifiers

A Slice identifier maps to an identical C++ identifier. For example, the Slice identifier O ock becomes the C++ identifier O ock. There is one
exception to this rule: if a Slice identifier is the same as a C++ keyword, the corresponding C++ identifier is prefixed with _cpp_. For
example, the Slice identifier whi | e is mapped as _cpp_whi | e.

A single Slice identifier often results in several C++ identifiers. For example, for a Slice interface named Foo, the generated C++ code uses
the identifiers Foo and FooPr x (among others). If the interface has the name whi | e, the generated identifiers are _cpp_whi | e and whi | e
Pr x (not _cpp_whi | ePr x), that is, the prefix is applied only to those generated identifiers that actually require it.

You should try to avoid such identifiers as much as possible.

See Also

Lexical Rules

C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions

210 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Lexical+Rules#LexicalRules-Identifiers
https://doc.zeroc.com/display/Ice36/Lexical+Rules#LexicalRules-identifier_keywords

Ice 3.6.4 Documentation

C++ Mapping for Modules

A Slice module maps to a C++ namespace. The mapping preserves the nesting of the Slice definitions. For example:

Slice

nodul e ML {
modul e M2 {
/11

/1
H

/1

nodul e ML { /'l Reopen ML
11

H

This definition maps to the corresponding C++ definition:

C++

nanespace ML {
namespace M2 {
/11

}
/1

/1

nanespace ML { // Reopen ML
/1

If a Slice module is reopened, the corresponding C++ namespace is reopened as well.
See Also

Modules

C++ Mapping for Identifiers
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions

211 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Built-In Types

On this page:
® Mapping of Slice Built-In Types to C++ Types

® Alternative String Mapping for C++
® String View Mapping in C++

Mapping of Slice Built-In Types to C++ Types

The Slice built-in types are mapped to C++ types as shown in this table:

Slice C++
bool bool
byte I ce::Byte

short I ce:: Short

int lce::Int
long I ce::Long
float I ce:: Fl oat

double | ce:: Double
string std::string

Slice bool and stri ng map to C++ bool and std: : stri ng. The remaining built-in Slice types map to C++ type definitions instead of C++
native types. This allows the Ice run time to provide a definition as appropriate for each target architecture. (For example, | ce: : | nt might
be defined as | ong on one architecture and as i nt on another.)

Note that | ce: : Byt e is a typedef for unsi gned char . This guarantees that byte values are always in the range 0..255.

All the basic types are guaranteed to be distinct C++ types, that is, you can safely overload functions that differ in only the types listed in the
table above.

Alternative String Mapping for C++

You can use a metadata directive, " cpp: t ype: wst ri ng", to map strings to C++ st d: : wst ri ng. This is useful for applications that use
languages with alphabets that cannot be represented in 8-bit characters. The metadata directive can be applied to any Slice construct. For
containers (such as modules, interfaces, or structures), the metadata directive applies to all strings within the container. A corresponding
metadata directive, " cpp: t ype: stri ng", can be used to selectively override the mapping defined by the enclosing container. For

example:

212 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
["cpp:type:wstring"]
struct S1 {
string x; /1 NMaps to std::wstring
["cpp:type:wstring"]
string y; /1 Maps to std::wstring
["cpp:type:string"]
string z; /1 Maps to std::string
i
struct S2 {
string Xx; /1 Maps to std::string
["cpp:type:string”]
string vy; /1 Maps to std::string
["cpp:type:wstring"]
string z; /1 Maps to std::wstring
s

With these metadata directives, the strings are mapped as indicated by the comments. By default, narrow strings are encoded as UTF-8,
and wide strings use Unicode in an encoding that is appropriate for the platform on which the application executes. You can override the
encoding for narrow and wide strings by registering a string converter with the Ice run time.

String View Mapping in C++

You can use the metadata directive cpp: vi ewt ype: stri ng-vi ewt ype to map some string parameters to a custom C++ "view-type" of
your choice. This view-type can reference memory without owning it, like the experimental st ri ng_vi ewtype. For example:

Slice

void sendString(["cpp:viewtype:std::experinental::string_view'] string
dat a) ;

maps to:

C++

/1 Proxy function for synchronous call: input paraneter mapped to
string_view type.
voi d sendString(const std::experinental::string_view&);

See Customizing the C++ Mapping for a detailed description of the cpp: vi ew t ype metadata directive.
See Also

® Basic Types
® Customizing the C++ Mapping

213 Copyright 2017, ZeroC, Inc.

http://en.cppreference.com/w/cpp/experimental/basic_string_view

214

Ice 3.6.4 Documentation

C++ Mapping for Identifiers

C++ Mapping for Modules

C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Sequences

C++ Mapping for Dictionaries

C++ Mapping for Constants

C++ Mapping for Exceptions

C++ Strings and Character Encoding

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Enumerations

A Slice enumeration maps to the corresponding enumeration in C++. For example:

Slice

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C++ definition is identical:

C++

enum Fruit { Apple, Pear, Orange };

Suppose we modify the Slice definition to include a custom enumerator value:

The

Slice

enum Fruit { Apple, Pear = 3, Orange };

C++

enum Fruit { Apple = 0, Pear = 3, Orange = 4 },;

See Also

215

Enumerations

C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Enumerations#Enumerations-custom

Ice 3.6.4 Documentation

C++ Mapping for Structures

A Slice structure maps to a C++ structure by default. In addition, you can use a metadata directive to map structures to C++ classes.
On this page:

® Default Mapping for Structures in C++
® Class Mapping for Structures in C++
® Default Constructors for Structures in C++

Default Mapping for Structures in C++

Slice structures map to C++ structures with the same name. For each Slice data member, the C++ structure contains a public data member.
For example, here is our Employee structure once more:

Slice

struct Enpl oyee {
| ong nunber;
string firstNane;
string | ast Nane;

s

The Slice-to-C++ compiler generates the following definition for this structure:

C++

struct Enpl oyee {
I ce:: Long nunber;
std::string firstNaneg;
std::string | ast Name;
bool operator==(const Enpl oyee&) const;
bool operator!=(const Enpl oyee&) const;
bool operator<(const Enployee&) const;
bool operator<=(const Enpl oyee&) const;
bool operator>(const Enpl oyee&) const;
bool operator>=(const Enpl oyee&) const;

H

For each data member in the Slice definition, the C++ structure contains a corresponding public data member of the same name.
Constructors are intentionally omitted so that the C++ structure qualifies as a plain old datatype (POD).

The structure may also contain comparison operators to allow its use as the key type of Slice dictionaries, which are mapped to st d: : map i
n C++. These operators have the following behavior:

® operator==
Two structures are equal if (recursively), all its members are equal.

® operator!=
Two structures are not equal if (recursively), one or more of its members are not equal.

® operator<
oper at or <=
oper at or >

216 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

oper at or >=

The comparison operators treat the members of a structure as sort order criteria: the first member is considered the first criterion,
the second member the second criterion, and so on. Assuming that we have two Enpl oyee structures, s1 and s2, this means that
the generated code uses the following algorithm to compare s1 and s2:

C++
bool Enpl oyee: : operat or<(const Enpl oyee& rhs) const
{
if (this == &rhs) /1 Short?cut self?conparison
return fal se;
/1l Conpare first nmenbers
11
i f (nunber < rhs. nunber)
return true;
else if (rhs.nunmber < nunber)
return fal se;
/1 First menbers are equal, conpare second nenbers
11
if (firstName < rhs.firstNane)
return true;
else if (rhs.firstName < firstNane)
return fal se;
/1 Second nenbers are equal, conpare third nenbers
11
if (lastName < rhs. | ast Nane)
return true;
else if (rhs.lastName < | astNane)
return fal se;
/1 Al menbers are equal, so return false
return fal se;
}

As of Ice 3.5, the comparison operators are only generated for structures that qualify as legal dictionary keys. Yo
u can force the Slice compiler to generate the comparison operators for non-qualifying structures by using the ¢
pp: conpar abl e metadata:

217 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Dictionaries#Dictionaries-types

Ice 3.6.4 Documentation

Slice

["cpp: conpar abl e"]
struct NoKey

{
float f;

s

Note that the ordering behavior for non-qualifying structures may not be deterministic.

Copy construction and assignment always have deep-copy semantics. You can freely assign structures or
structure members to each other without having to worry about memory management. The following code
fragment illustrates both comparison and deep-copy semantics:

C++
Enpl oyee el, e2;
el.firstNane = "Bjarne";
el.l astNane = "Stroustrup";
e2 = el; /1 Deep copy
assert(el == e2);
e2.firstNanme = "Andrew'; /1 Deep copy
e2. | ast Nane = "Koenig"; /1 Deep copy
assert(e2 < el);

Because strings are mapped to st d: : st ri ng, there are no memory management issues in this code and structure assignment and copying
work as expected. (The default member-wise copy constructor and assignment operator generated by the C++ compiler do the right thing.)

Class Mapping for Structures in C++

Occasionally, the mapping of Slice structures to C++ structures can be inefficient. For example, you may need to pass structures around in
your application, but want to avoid having to make expensive copies of the structures. (This overhead becomes noticeable for structures with
many complex data members, such as sequences or strings.) Of course, you could pass the structures by const reference, but that can
create its own share of problems, such as tracking the life time of the structures to avoid ending up with dangling references.

For this reason, you can enable an alternate mapping that maps Slice structures to C++ classes. Classes (as opposed to structures) are
reference-counted. Because the Ice C++ mapping provides smart pointers for classes, you can keep references to a class instance in many
places in the code without having to worry about either expensive copying or life time issues.

The alternate mapping is enabled by a metadata directive, [" cpp: cl ass"] . Here is our Employee structure once again, but this time with
the additional metadata directive:

218 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice
["cpp:class"] struct Enployee {
| ong nunber;
string firstNane;
string | ast Nane;
s
Here is the generated class:
C++

class Enpl oyee : public lceUil::Shared {
publi c:
Enpl oyee() {}
Enmpl oyee(::1ce:: Long,
const ::std::string&,
const ::std::string&;
::lce::Long nunber;
c:std::string firstNaneg;
c:std::string | ast Nane;

bool operator==(const Enpl oyee&) const;
bool operator!=(const Enpl oyee& const;
bool operator<(const Enpl oyee&) const;
bool operator<=(const Enpl oyee&) const;
bool operator>(const Enpl oyee&) const;
bool operator>=(const Enpl oyee&) const;

H

Note that the generated class, apart from a default constructor, has a constructor that accepts one argument for each member of the
structure. This allows you to instantiate and initialize the class in a single statement (instead of having to first instantiate the class and then
assign to its members).

As for the default structure mapping, the class contains one public data member for each data member of the corresponding Slice structure.
The comparison operators behave as for the default structure mapping.

You can learn how to instantiate classes, and how to access them via smart pointers, in the sections describing the mapping for Slice
classes — the API described there applies equally to Slice structures that are mapped to classes.

Default Constructors for Structures in C++

Structures have an implicit default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built?in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to
assume that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be
outside the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a
legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.

219 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

The default constructor initializes each of these data members to its declared value.

If you declare a default value for at least one member of a structure, or use the class mapping for the structure, the Slice compiler also
generates a second constructor. This one-shot constructor has one parameter for each data member, allowing you to construct and initialize
an instance in a single statement (instead of first having to construct the instance and then assign to its members).

See Also

Structures
C++ Mapping for Enumerations
C++ Mapping for Sequences

[]
[]
[]
® C++ Mapping for Dictionaries

220 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Sequences

On this page:

® Default Sequence Mapping in C++

® Custom Sequence Mapping in C++

® Custom Mapping for Sequence Parameters in C++
® Array Mapping for Sequence Parameters in C++
® Range Mapping for Sequence Parameters in C++

Default Sequence Mapping in C++

Here is the definition of our Frui t Pl at t er sequence once more:

Slice

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following definition for the Frui t Pl at t er sequence:

C++

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to a standard st d: : vect or, so you can use the sequence like any other vector. For example:

C++

/1 Make a small platter with one Apple and one O ange
/1

FruitPlatter p;

p. push_back(Appl e) ;

p. push_back(Orange);

Custom Sequence Mapping in C++

You can override the default mapping of Slice sequences to C++ vectors with the cpp:type and cpp:view-type metadata directives.

For example:

221 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

[["cpp:include:list"]]

nodul e Food {

enum Fruit { Apple, Pear, Orange };

["cpp:type:std::list< ::Food:: Fruit>"]
sequence<Fruit> FruitPl atter
i
With this metadata directive, the sequence now mapsto a C++std: : list:
C++

#i ncl ude <l i st>

nanespace Food ({

11

typedef std::list<Food::Fruit> FruitPlatter;

Custom Mapping for Sequence Parameters in C++

In addition to the default and custom mappings of sequence types as a whole, you can use metadata to customize the mapping of a single

operation parameter of type sequence.

Ice provides two metadata directives for this purpose, ["cpp: array"] and ["cpp: range"] .

Array Mapping for Sequence Parameters in C++

The array mapping for sequence parameters applies only to:

® In parameters, on the client-side and on the server-side
® Out and return parameters provided by the Ice run-time to AMI type-safe callbacks and AMI lambdas

® Out and return parameters provided to AMD callbacks

For example:

Slice

interface File {

H

void wite(["cpp:array"] Ice:

: Byt eSeq contents);

The cpp: ar r ay metadata directive instructs the compiler to map the cont ent s parameter to a pair of pointers. With this directive, the wr i

222

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

t e method on the proxy has the following signature:

C++

void wite(const std::pair<const |ce::Byte*,
const |ce::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer points at the beginning of the sequence, and the second
pointer points one element past the end of the sequence.

Similarly, for the server side, the wr i t e method on the skeleton has the following signature:

C++
virtual void wite(const ::std::pair<const ::lce::Byte*,
const ::lce::Byte*>§&,
const ::lce::Current& = ::lce::Current()) = O;

The passed pointers denote the beginning and end of the sequence as arange [first, | ast) (thatis, they use the usual semantics for
iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The pointers point directly into the server-side transport buffer; this
allows the server-side run time to avoid creating a vect or to pass to the operation implementation, thereby avoiding both allocating memory
for the sequence and copying its contents into that memory.

You can use the array mapping for any sequence type. However, it provides a performance advantage only for byte sequences
(on all platforms) and for sequences of integral or floating point types (on some platforms).

Range Mapping for Sequence Parameters in C++

The range mapping for sequences is similar to the array mapping and exists for the same purpose, namely, to enable zero-copy of sequence
parameters:

Slice

interface File {
void wite(["cpp:range"] Ilce::ByteSeq contents);

H

The cpp: r ange metadata directive instructs the compiler to map the cont ent s parameter to a pair of const _i t er at or . With this
directive, the wr i t e method on the proxy has the following signature:

C++

void wite(const std::pair<lce::ByteSeq::const _ iterator,
| ce::ByteSeq::const _iterator>& contents);

Similarly, for the server side, the wr i t e method on the skeleton has the following signature:

223 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

virtual void wite(

const ::std::pair<::lce::ByteSeq::const_iterator,
::lce::ByteSeq::const _iterator>&

const ::lce::Current& = ::lce::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as arange [first, | ast) (thatis, they use the usual semantics for
iterators).

The motivation for the range mapping is the same as for the array mapping: the passed iterators point directly into the server-side transport
buffer and so avoid the need to create a temporary vect or to pass to the operation.

As for the array mapping, the range mapping can be used with any sequence type, but offers a performance advantage only for
byte sequences (on all platforms) and for sequences of integral type (x86 platforms only).

You can optionally add a type hame to the cpp: r ange metadata directive, for example:

Slice

interface File {

void wite(["cpp:range: std:: deque<lce:: Byte>"]
I ce::ByteSeq contents);
i

This instructs the compiler to generate a pair of const _i t er at or for the specified type:

C++

virtual void wite(
const ::std::pair<std::deque<lce::Byte>: :const _iterator,
std:: deque<lce:: Byte>::const _iterator>§&,
const ::lce::Current& = ::lce::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence type that behaves like an standard container.
See Also

Sequences

Customizing the C++ Mapping
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Dictionaries
C++ Mapping for Operations

224 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Dictionaries

On this page:

® Default Dictionary Mapping in C++
® Custom Dictionary Mapping in C++

Default Dictionary Mapping in C++

Here is the definition of our Enpl oyeeMap once more:

Slice

di cti onary<l ong, Enpl oyee> Enpl oyeeMap;

The following code is generated for this definition:

C++

t ypedef std::nmap<lce::Long, Enployee> Enpl oyeeMap;

Again, there are no surprises here: a Slice dictionary simply maps to a standard st d: : map. As a result, you can use the dictionary like any
other map, for example:

C++

Enpl oyeeMap em

Enpl oyee e;

e. nunber = 42;
e.firstNane = "Stan";
e.last Name = "Li pprman”;

enf e. nunber] = e;

e. nunber = 77;
e.firstName = "Herb";
e.lastNane = "Sutter";
enf e. nunber] = e;

Custom Dictionary Mapping in C++

You can override the default mapping of Slice dictionaries to C++ maps with a cpp: t ype a or cpp: vi ewt ype metadata directive, for
example:

225 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

[["cpp:include:unordered_nap"]]

["cpp:type:std::unordered_map<I|ce::Long, Enployee>"] dictionary<l|ong,
Enmpl oyee> Enpl oyeeMap;

With this metadata directive, the dictionary now maps to a C++ st d: : unor der ed_nap:

C++

#i ncl ude <unordered _map>

typedef std::unordered_map<lce::Long, Enployee> Enpl oyeeMap;

See Customizing the C++ Mapping for detailed information about the cpp: t ype and cpp: vi ew t ype metadata directives.

See Also

Dictionaries

Customizing the C++ Mapping
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences

226 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. For example:

Slice
const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0xOf;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const doubl e Pl = 3.1416;
enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Here are the generated definitions for these constants:

C++
const bool AppendByDef aul t = true;
const lce::Byte Lower Ni bbl e = 15;
const std::string Advi ce = "Don't Panic!";
const Ice:: Short TheAnswer = 42;
const |ce:: Double Pl = 3. 1416;
enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear ;

All constants are initialized directly in the header file, so they are compile-time constants and can be used in contexts where a compile-time
constant expression is required, such as to dimension an array or as the case label of a swi t ch statement.

A Slice string literal that contains non-ASCII characters is mapped by default to a harrow C++ string literal with the non-ASCII characters
replaced by their UTF-8 encoding in octal escapes. For example:

Slice
const string Egg = "ouf";
is mapped to:
C++
const std::string Egg = "\305\223uf";

If you map a string constant to a st d: : wst ri ng, the non-ASCII characters in the string literal are replaced by universal character names,
except for non-ASCII characters in the range \ u0000 to \ uO09f that are replaced by octal escapes with the same value. For example:

227 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Slice

const ["cpp:type:wstring"] string LargeEgg = "gros aaf";

is mapped to:

C++

const std::wstring LargeEgg = L"gros \u0153uf";

Likewise, a Slice string literal that contains universal character names is mapped to a narrow C++ string with the universal character names r
eplaced by their UTF-8 encoding in octal escapes, or to a wide C++ string with the universal character names preserved (except for
characters in the range \ u0000 to \ u009f that are replaced by octal escapes with the same value). For example:

Slice

const string Heart = "c\u0153ur";
const ["cpp:type:wstring”"] string BigHeart = "grand c\u0153ur";
const ["cpp:type:wstring"] string Banana = "\ U0001F34C';

const string Doubl eTilde = "~\u007e";
const ["cpp:type:wstring"] string Wooubl eTil de = "~\u007e";
is mapped to:
C++

const std::string Heart = "c\305\223ur";
const std::wstring BigHeart = L"grand c\u0153ur";
const std::wstring Banana = L"\U0001F34C";

const std::string DoubleTilde = "~\176";
const std::string WboubleTilde = L"~\176";

See Also

Constants and Literals

C++ Mapping for Identifiers
C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Exceptions

228 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Exceptions

On this page:
® C++ Mapping for User Exceptions

® C++ Default Constructors for Exceptions
® C++ Mapping for Run-Time Exceptions

C++ Mapping for User Exceptions

Here is a fragment of the Slice definition for our world time server once more:

Slice

exception CenericError {
string reason;
s
exception BadTi meVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

229 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

class GenericError: public Ice::UserException {
publi c:
std::string reason;

GenericError() {}
explicit GenericError(const string&

virtual const std::string& ice _nane() const;
virtual Ice:: Exception* i ce_clone() const;
virtual void ice_throw() const;
/1l Ot her nenber functions here..

H

cl ass BadTi neVal : public GenericError {
publi c:

BadTi neval () {}

explicit BadTi neVal (const string&

virtual const std::string& ice_name() const;
virtual Ice:: Exception* i ce_clone() const;
virtual void ice_throw() const;
/1 QG her menber functions here..

H

cl ass BadZoneName: public GenericError {
publi c:

BadZoneNane() {}

explicit BadZoneNane(const string&

virtual const std::string& ice_nane() const;
virtual Ice::Exception* i ce_clone() const;
virtual void ice_throw() const;

H

Each Slice exception is mapped to a C++ class with the same name. For each exception member, the corresponding class contains a public
data member. (Since BadTi neVal and BadZoneNane do not have members, the generated classes for these exceptions also do not have
members.) Optional data members are mapped to instances of the | ceUti | : : Opti onal template.

The inheritance structure of the Slice exceptions is preserved for the generated classes, so BadTi neVal and BadZoneNan® inherit from Ge
neri cError.

Each exception has three additional member functions:
® jice_nane
As the name suggests, this member function returns the name of the exception. For example, if you call the i ce_name member

function of a BadZoneNane exception, it (not surprisingly) returns the string " BadZoneNane" . The i ce_nane member function is
useful if you catch exceptions generically and want to produce a more meaningful diagnostic, for example:

230 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
try {
/11
} catch(const GenericError& e) {
cerr << "Caught an exception: " << e.ice_nanme() << endl;

If an exception is raised, this code prints the name of the actual exception (BadTi meVal or BadZoneNane) because the exception
is being caught by reference (to avoid slicing).

® ice_clone
This member function allows you to polymorphically clone an exception. For example:

C++

try {
/1

} catch(const Ice::UserException& e) {
| ce:: User Exception* copy = e.clone();

i ce_cl one is useful if you need to make a copy of an exception without knowing its precise run-time type. This allows you to
remember the exception and throw it later by calling i ce_t hr ow.

® ice_throw
i ce_t hr ow allows you to throw an exception without knowing its precise run-time type. It is implemented as:

C++

voi d
CenericError::ice_throw() const

{

throw *this;

You can call i ce_t hr owto throw an exception that you previously cloned with i ce_cl one.

Each exception has a default constructor. Members having a complex type, such as strings, sequences, and dictionaries, are initialized by
their own default constructor. However, the default constructor performs no initialization for members having one of the simple built-in types
boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the member has a reasonable default
value. This is especially true for enumerated types as the member's default value may be outside the legal range for the enumeration, in
which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value. Optional data members are unset unless they declare
default values.

An exception also has a second constructor that accepts one argument for each exception member. This constructor allows you to
instantiate and initialize an exception in a single statement, instead of having to first instantiate the exception and then assign to its
members. For each optional data member, its corresponding constructor parameter uses the same mapping as for operation parameters,
allowing you to pass its initial value or | ceUt i | : : None to indicate an unset value.

For derived exceptions, the constructor accepts one argument for each base exception member, plus one argument for each derived
exception member, in base-to-derived order.

231 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716055#C++MappingforOperations-optional

Ice 3.6.4 Documentation

Note that the generated exception classes contain other member functions that are not shown here. However, those member functions are
internal to the C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from | ce: : User Excepti on. Inturn, | ce: : User Except i on inherits from | ce: : Excepti on (which
is an alias for | ceUti | : : Excepti on):

C++

nanespace lceltil {
cl ass Exception : public std::exception {
virtual const std::string& ice_nanme() const;

Excepti on* i ce_clone() const;
voi d ice_throw) const;
virtual void ice_print(std::ostream&) const;
11
b
std::ostreanm& operator<<(std::ostream& const Exceptiong&);
11

nanespace |ce {
typedef IceUtil::Exception Exception;

cl ass User Exception: public Exception {

publi c:
virtual const std::string& ice_name() const = O;
/1

H

| ce: : Excepti on forms the root of the exception inheritance tree. Apart from the usual i ce_nane, i ce_cl one, and i ce_t hr owmember
functions, it contains the i ce_pri nt member functions. i ce_pri nt prints the name of the exception. For example, calling i ce_pri nt on
a BadTi neVal exception prints:

BadTi meVal

To make printing more convenient, oper at or << is overloaded for | ce: : Except i on, so you can also write:

C++

try {
/1

} catch(const Ice::Exception& e) {
cerr << e << endl

This produces the same output because oper at or << callsi ce_pri nt internally. You can optionally provide your own i ce_pri nt implem
entation using the cpp: : i ce_pri nt metadata directive.

For Ice run time exceptions, i ce_pri nt also shows the file name and line number at which the exception was thrown.

C++ Default Constructors for Exceptions

232 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Exceptions have a default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume
that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside
the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal
value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this
constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data members,
in base-to-derived order.

C++ Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from | ce: : Local Excepti on (which, in turn, derives from | ce: : Excepti on). | ce: : Local Excepti on has the usual member functions:
i ce_nane, i ce_cl one, i ce_t hrow, and (inherited from | ce: : Exception),ice_print,ice_file,andice_line.

Recall the inheritance diagram for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can
handle exceptions according to the category of error they indicate:

® |ce:: Exception
This is the root of the complete inheritance tree. Catching | ce: : Except i on catches both user and run-time exceptions. As shown
earlier, | ce: : Excepti onis atypedefforlceUtil:: Exception,andlceltil::Excepti on inherits from std:: excepti on.

® |ce:: UserException
This is the root exception for all user exceptions. Catching | ce: : User Except i on catches all user exceptions (but not run-time
exceptions).

® |ce::Local Exception
This is the root exception for all run-time exceptions. Catching | ce: : Local Except i on catches all run-time exceptions (but not
user exceptions).

® |ce:: Ti meout Exception
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | ce:: Connect Ti neout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a Connect Ti meout Except i on can be handled as Connect Ti meout Except i on, Ti meout Excepti on, Local Excepti o
n, or Excepti on.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Local Except i on; the
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are
Facet Not Exi st Excepti on and Obj ect Not Exi st Except i on, respectively.

See Also

User Exceptions

Run-Time Exceptions

C++ Mapping for Identifiers
C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Optional Values
Versioning

Object Life Cycle

233 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Run-Time+Exceptions#Run-TimeExceptions-InheritanceHierarchyforExceptions

Ice 3.6.4 Documentation

C++ Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote operation, you call a member function on a local class
instance that is a proxy for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is
no different from making a local procedure call (apart from error semantics).

On this page:

® Proxy Classes and Proxy Handles
® Inheritance from Ice::Object
® Proxy Handles
® Methods on Proxy Handles
Default constructor
Copy constructor
Assignment operator
Checked cast
Unchecked cast
Stream insertion and stringification
Static id
® Using Proxy Methods in C++
® Object Identity and Proxy Comparison in C++

Proxy Classes and Proxy Handles

On the client side, a Slice interface maps to a class with member functions that correspond to the operations on that interface. Consider the
following simple interface:

Slice
nodul e M {
interface Sinple {
void op();

b
b

The Slice compiler generates the following definitions for use by the client:

234 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

nanespace | ceProxy {
nanespace M {
cl ass Simple;

nanespace M {
class Sinpl e;
typedef Icelnternal::ProxyHandl e< ::l1ceProxy::M:Sinmple> SinplePrx;
typedef Icelnternal::Handle< ::M:Sinple> SinplePtr;

nanespace | ceProxy {
namespace M {
class Sinmple : public virtual IceProxy::lce::Object {
public:
void op();
voi d op(const Ice:: Context&);
11
b
b

As you can see, the compiler generates a proxy class Si npl e in the | cePr oxy: : Mnamespace, as well as a proxy handle M : Si npl ePr x.
In general, for a module M the generated names are : : | ceProxy: : M : <i nterface-nanme>and:: M: <i nterface-nanme>Prx.

In the client's address space, an instance of | cePr oxy: : M : Si npl e is the local ambassador for a remote instance of the Si npl e interface
in a server and is known as a proxy class instance. All the details about the server-side object, such as its address, what protocol to use, and
its object identity are encapsulated in that instance.

Inheritance from | ce: : Obj ect

Si npl e inherits from | cePr oxy: : | ce: : vj ect, reflecting the fact that all Ice interfaces implicitly inherit from | ce: : Obj ect . For each
operation in the interface, the proxy class has two overloaded member functions of the same name. For the preceding example, we find that
the operation op has been mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type | ce: : Cont ext . This parameter is for use by the Ice run time to
store information about how to deliver a request; normally, you do not need to supply a value here and can pretend that the trailing
parameter does not exist. (The parameter is also used by IceStorm.)

Proxy Handles

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly.
The following code will not compile because the proxy class does not provide a public default constructor:

C++

IceProxy::M:Sinples; [/ Conpile-tinme error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly. When the client receives a proxy from the run time, it is given a proxy handle to the proxy, of type <i nt er f ace- name>Pr x (Si npl

235 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

ePr x for the preceding example). The client accesses the proxy via its proxy handle; the handle takes care of forwarding operation
invocations to its underlying proxy, as well as reference-counting the proxy. This means that no memory-management issues can arise:
deallocation of a proxy is automatic and happens once the last handle to the proxy disappears (goes out of scope).

Because the application code always uses proxy handles and never touches the proxy class directly, we usually use the term proxy to

denote both proxy handle and proxy class. This reflects the fact that, in actual use, the proxy handle looks and feels like the underlying proxy
class instance. If the distinction is important, we use the terms proxy class, proxy class instance, and proxy handle.

Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type | cel nt er nal : : Pr oxyHandl e that takes the proxy class
as the template parameter. This template has the usual default constructor, copy constructor, and assignment operator.

Default constructor

You can default-construct a proxy handle. The default constructor creates a proxy that points nowhere (that is, points at no object at all). If

you invoke an operation on such a null proxy, you getan | ceUti | :: Nul | Handl eExcepti on:
C++
try {
Si npl ePrx s; /1 Default-constructed proxy
s->op(); /1 Call via nil proxy
assert (0); /1l Can't get here

} catch (const lceUtil::NullHandl eException&) {
cout << "As expected, got a Null Handl eException" << endl;

Copy constructor

The copy constructor ensures that you can construct a proxy handle from another proxy handle. Internally, this increments a reference count
on the proxy; the destructor decrements the reference count again and, once the count drops to zero, deallocates the underlying proxy class
instance. That way, memory leaks are avoided:

C++
{ /1l Enter new scope
SinplePrx s1 = ...; /1l Get a proxy from sonewhere
Si mpl ePrx s2(sl); /1l Copy-construct s2
assert (sl == s2); /] Assertion passes
} /1 Leave scope; sl1, s2, and the

/1 underlying proxy instance
/1 are deallocated

Note the assertion in this example: proxy handles support comparison.

Assignment operator

You can freely assign proxy handles to each other. The handle implementation ensures that the appropriate memory-management activities
take place. Self-assignment is safe and you do not have to guard against it:

236 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
SinplePrx s1 = ...; /1 Cet a proxy from sonmewhere
Si mpl ePrx s2; /1 s2 is ni
s2 = sl; /1 both point at the sane object
sl = 0; [l sl is nil
s2 = 0; [l s2 is nil

Widening assignments work implicitly. For example, if we have two interfaces, Base and Der i ved, we can widen a Der i vedPr x to a Base
Pr x implicitly:

C++
BasePr x base;
Deri vedPrx derived;
base = derived; /1 Fine, no problem
derived = base; /1 Conpile-tine error

Implicit narrowing conversions result in a compile error, so the usual C++ semantics are preserved: you can always assign a derived type to
a base type, but not vice versa.

Checked cast

Proxy handles provide a checkedCast method:

C++
namespace | cel nternal {
t enpl at e<t ypenane T>
cl ass ProxyHandl e : public IceUil::Handl eBase<T> {

public:
t enpl at e<cl ass Y>
static ProxyHandl e checkedCast (const ProxyHandl e<Y>& r);

t enpl at e<cl ass Y>

static ProxyHandl e checkedCast (const ProxyHandl e<Y>& r, const ::lce::Co
ntext& c);

/1
b

A checked cast has the same function for proxies as a C++ dynani c_cast has for pointers: it allows you to assign a base proxy to a
derived proxy. If the type of the base proxy's target object is compatible with the derived proxy's static type, the assignment succeeds and,
after the assignment, the derived proxy denotes the same object as the base proxy. Otherwise, if the type of the base proxy's target object is
incompatible with the derived proxy's static type, the derived proxy is set to null. Here is an example to illustrate this:

237 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

BasePrx base = ...; /1 Initialize base proxy
DerivedPrx derived = DerivedPrx::checkedCast (base);
if (derived) {

/1 Base has run-tinme type Derived,

/'l use derived..
} else {

/1l Base has sone other, unrelated type

The expression Der i vedPr x: : checkedCast (base) tests whether base points at an object of type Der i ved (or an object with a type
that is derived from Der i ved). If so, the cast succeeds and der i ved is set to point at the same object as base. Otherwise, the cast fails
and der i ved is set to the null proxy.

Note that checkedCast is a static member function so, to do a down-cast, you always use the syntax <i nt er f ace- nanme>Pr x: : checked
Cast .

Also note that you can use proxies in boolean contexts. For example, i f (proxy) returns true if the proxy is not null.

A checkedCast typically results in a remote message to the server.The message effectively asks the server "is the object denoted by this
reference of type Derived?"

Calling checkedCast on a proxy that is already of the desired proxy type returns immediately that proxy. Otherwise, checkedCa
st always calls i ce_i sA on the target object, and upon success, creates a new instance of the desired proxy class.

The reply from the server is communicated to the application code in form of a successful (non-null) or unsuccessful (null) result. Sending a
remote message is necessary because, as a rule, there is no way for the client to find out what the actual run-time type of the target object is
without confirmation from the server. (For example, the server may replace the implementation of the object for an existing proxy with a more
derived one.) This means that you have to be prepared for a checkedCast to fail. For example, if the server is not running, you will receive
a Connect Fai | edExcepti on; if the server is running, but the object denoted by the proxy no longer exists, you will receive an Obj ect No
t Exi st Excepti on.

Unchecked cast

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

C++
nanespace |celnternal {
t enpl at e<t ypenane T>
class ProxyHandl e : public IceUtil::Handl eBase<T> {

publi c:
t enpl at e<cl ass Y>
static ProxyHandl e uncheckedCast (const ProxyHandl e<Y>& r);
/1

An uncheckedCast provides a down-cast without consulting the server as to the actual run-time type of the object, for example:

238 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

BasePrx base = ...; /1 Initialize to point at a Derived
Deri vedPrx derived;

derived = DerivedPrx::uncheckedCast (base);

/1 Use derived...

You should use an uncheckedCast only if you are certain that the target object indeed supports the more derived type: an uncheckedCas
t, as the name implies, is not checked in any way; it does not contact the object in the server and, if it fails, it does not return null. If you use
the proxy resulting from an incorrect uncheckedCast to invoke an operation, the behavior is undefined. Most likely, you will receive an Ope
rati onNot Exi st Except i on, but, depending on the circumstances, the Ice run time may also report an exception indicating that
unmarshaling has failed, or even silently return garbage results.

Calling uncheckedCast on a proxy that is already of the desired proxy type returns immediately that proxy. Otherwise, unchecke
dCast creates a new instance of the desired proxy class.

Despite its dangers, uncheckedCast is still useful because it avoids the cost of sending a message to the server. And, particularly during in
itialization, it is common to receive a proxy of static type | ce: : Obj ect , but with a known run-time type. In such cases, an uncheckedCast
saves the overhead of sending a remote message.

Stream insertion and stringification

For convenience, proxy handles also support insertion of a proxy into a stream, for example:

C++
lce::bjectPrx p = ...;
cout << p << endl;
This code is equivalent to writing:
C++

lce::bjectPrx p = ...;
cout << p->ice_toString() << endl;

Either code prints the stringified proxy. You could also achieve the same thing by writing:

C++

lce::bjectPrx p = ...;
cout << conmuni cator->proxyToString(p) << endl;

The advantage of using the i ce_t oSt ri ng member function instead of pr oxyToSt ri ng is that you do not need to have the communicator
available at the point of call.

Static id

Thei ce_stati cl d method returns the type ID of the proxy's Slice interface:

239 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
namespace | cel nternal {
t enpl at e<t ypenane T>
class ProxyHandl e : public Iceltil:: Handl eBase<T> {
public:
static const std::string& ice_staticld();
11
b
}
Here's an example that shows how to use it:
C++
BasePrx base = ...;
i f(base->ice_ id() == Derived::ice_staticld())
/1 target object inplements Derived

Applications normally use checkedCast instead of calling i ce_i d directly.

Using Proxy Methods in C++

The base proxy class Cbj ect Pr x supports a variety of methods for customizing a proxy. Since proxies are immutable, each of these
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

C++

I ce:: ObjectPrx proxy = comuni cator->stringToProxy(...);
proxy = proxy->ice_tinmeout (10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

C++

I ce:: ObjectPrx base = conmuni cat or->stringToProxy(...);
Hel | oPrx hello = Hel |l oPrx:: checkedCast (base);

hell o = hello->ice_timeout (10000); // Type is preserved
hel | o- >sayHel | o() ;

The only exceptions are the factory methods i ce_facet andi ce_i denti ty. Calls to either of these methods may produce a proxy for an
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

240 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Object Identity and Proxy Comparison in C++

Proxy handles support comparison using the following operators:

® operator bool
Proxies have a conversion operator to bool . The operator returns true if a proxy is not null, and false otherwise. This allows you to

write:
C++
BasePrx base = ...;
i f (base)
/1 1t's a non-nil proxy
if (!base)
/1 1t's a nil proxy
® operator==
operator!=

These operators permit you to compare proxies for equality and inequality. It's also legal to compare a proxy against the literal 0 to
test whether a proxy is null, but we recommend using the bool operator instead.

® operator<
oper at or <=
oper at or >
oper at or >=
Proxies support comparison. This allows you to place proxies into STL containers such as maps or sorted lists.

Note that proxy comparison uses all of the information in a proxy for the comparison. This means that not only the object identity must match
for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other
words, comparison with == and ! = tests for proxy identity, not object identity. A common mistake is to write code along the following lines:

C++

lce::ObjectPrx pl = ...; /1 Get a proxy..
lce::QbjectPrx p2 = ...; /1 Cet another proxy..
if (pl!'=p2) {

/1 pl and p2 denote different objects /1 \ARONG
} else {

/1 pl and p2 denote the sane object /1 Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can happen because, for example, both p1 and p2 embed the
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with ==, we know that the two proxies denote the same object (because they are identical in all respects); however, if two
proxies compare unequal with ==, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the | ce namespace:

241 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

nanespace |ce {

bool proxyldentitylLess(const (bjectPrx& const ObjectPrx&);
bool proxyldentityEqual (const ObjectPrx& const ObjectPrx&);
bool proxyldentityAndFacet Less(const ObjectPrx& const ObjectPrx&);
bool proxyldentityAndFacet Equal (const Obj ect Prx&, const Object Prx&)

The proxyl denti t yEqual function returns true if the object identities embedded in two proxies are the same and ignores other
information in the proxies, such as facet and transport information. To include the facet name in the comparison, use pr oxyl denti t yAndF
acet Equal instead.

The proxyl denti t yLess function establishes a total ordering on proxies. It is provided mainly so you can use object identity comparison
with STL sorted containers. (The function uses namne as the major ordering criterion, and cat egor y as the minor ordering criterion.) The pr
oxyl denti t yAndFacet Less function behaves similarly to pr oxyl denti t yLess, except that it also compares the facet names of the
proxies when their identities are equal.

proxyl dentityEqual and proxyl dentityAndFacet Less allow you to correctly compare proxies for object identity. The example
below demonstrates how to use pr oxyl denti t yEqual :

C++
lce::bjectPrx pl = ...; /] Cet a proxy..
lce::bjectPrx p2 = ...; /'l Get another proxy..

if (!lce::proxyldentityEqual (pl, p2) {

/1 pl and p2 denote different objects /1 Correct
} else {
/1 pl and p2 denote the sane object /1 Correct
}
See Also

Interfaces, Operations, and Exceptions
Proxies for Ice Objects

C++ Mapping for Operations

Example of a File System Client in C++
Versioning

IceStorm

242 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Operations

On this page:

® Basic C++ Mapping for Operations
® Normal and idempotent Operations in C++
® Passing Parameters in C++
® In-Parameters in C++
® Qut-Parameters in C++
® Optional Parameters in C++
® Chained Invocations in C++
® Exception Handling in C++
® Exceptions and Out-Parameters in C++
® Exceptions and Return Values in C++

Basic C++ Mapping for Operations

As we saw in the C++ mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function
with the same name. To invoke an operation, you call it via the proxy handle. For example, here is part of the definitions for our file system:

Slice

nodul e Fil esystem {
i nterface Node {
i denpotent string nane();

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as follows:

C++

nanespace |ceProxy {
nanespace Fil esystem {
class Node : virtual public lIceProxy::lce::hject {

public:
std::string nane();
/1
1
typedef Icelnternal:: ProxyHandl e<Node> NodePrx;
/1
}
11

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

243 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++
NodePrx node = ...; /1 Initialize proxy
string nane = node->nane(); /1l Get nane via RPC

The proxy handle overloads oper at or - > to forward method calls to the underlying proxy class instance which, in turn, sends the operation
invocation to the server, waits until the operation is complete, and then unmarshals the return value and returns it to the caller.

Because the return value is of type st ri ng, it is safe to ignore the return value. For example, the following code contains no memory leak:

C++
NodePrx node = ...; /1 Initialize proxy
node- >nane() ; /1 Usel ess, but no |eak

This is true for all mapped Slice types: you can safely ignore the return value of an operation, no matter what its type — return values are
always returned by value. If you ignore the return value, no memory leak occurs because the destructor of the returned value takes care of
deallocating memory as needed.

Normal and i denpot ent Operations in C++

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy methods is concerned, i dem
pot ent has no effect. For example, consider the following interface:

Slice

interface Exanmple {
string opl();
i denpotent string op2();
i denpotent void op3(string s);
i

The proxy class for this interface looks like this:

244 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Operations#Operations-IdempotentOperations

Ice 3.6.4 Documentation

C++

nanespace | ceProxy {
class Exanple : virtual public |IceProxy::lce::hject {

publi c:
std::string opl();
std::string op2(); /1 idenpotent
voi d op3(const std::string&); /1 i denpot ent
/1

b

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the i denpot ent
keyword.

Passing Parameters in C++

In-Parameters in C++

The parameter passing rules for the C++ mapping are very simple: parameters are passed either by value (for small values) or by const ref
erence (for values that are larger than a machine word). Semantically, the two ways of passing parameters are identical: it is guaranteed that
the value of a parameter will not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct Nunber AndString {
int x;
string str;

s
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;

interface CientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunmber AndString ns, StringSeq ss, StringTable st);
voi d op3(d ient ToServer* proxy);

s

The Slice compiler generates the following code for this definition:

245 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

struct Number AndString {

lce::Int Xx;
std::string str;
/11

s
typedef std::vector<std::string> StringSeq;
typedef std::map<lce::Long, StringSeq> StringTabl e;

nanespace | ceProxy {
class dientToServer : virtual public IceProxy::Ilce::Object {
publi c:
void opl(lce::Int, lce::Float, bool, const std::string&);
voi d op2(const Nunber AndString&, const StringSeq&,
const StringTabl e&);
voi d op3(const CientToServerPrx&)
11

H

Given a proxy to a Cl i ent ToSer ver interface, the client code can pass parameters as in the following example:

C++

ClientToServerPrx p = ...; /'l Get proxy...

p->opl(42, 3.14, true, "Hello world!"); // Pass sinple literals

int i = 42;

float f = 3.14;

bool b = true;

string s = "Hello world!";

p->opl(i, f, b, s); /'l Pass sinple variables

Nurmber AndString ns = { 42, "The Answer" };
StringSeq ss;

ss. push_back("Hell o world!");

StringTabl e st;

st[0] = ss;
p- >op2(ns, ss, st); /1l Pass conpl ex vari abl es
p->op3(p); /'l Pass proxy

246 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

You can pass either literals or variables to the various operations. Because everything is passed by value or const reference, there are no
memory-management issues to consider.

Out-Parameters in C++

The C++ mapping passes out-parameters by reference. Here is the Slice definition once more, modified to pass all parameters in the out dir
ection:

Slice

struct Number AndString {
int Xx;
string str;

i
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;

interface ServerTod ient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Number AndString ns, out StringSeq ss,

out StringTable st);
voi d op3(out ServerTod ient* proxy);

H

The Slice compiler generates the following code for this definition:

C++

nanespace | ceProxy {
class ServerToCient : virtual public IceProxy::lce::Object {
publi c:
void opl(lce::Int& Ilce::Float& bool& std::string&);
voi d op2(Nunber AndString& StringSeq& StringTableg&);
voi d op3(ServerTod i ent Prx&);
11

Given a proxy to a Ser ver Tod i ent interface, the client code can pass parameters as in the following example:

247 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

p- >op2(ns,
/Il ns, ss,

p->0p3(p);

C++
ServerToClientPrx p = ...; /1 Get proxy...
int i;
float f;
bool b;
string s;
p->opl(i, f, b, s);
/1 i, f, b, and s contain updated val ues now

Nunber AndStri ng ns;
StringSeq ss;
StringTabl e st;

ss, st);
and st contain updated val ues now

/1 p has changed now

Again, there are no surprises in this code: the caller simply passes variables to an operation; once the operation completes, the values of
those variables will be set by the server.

It is worth having another look at the final call:

C++

p->0p3(p);

/1 Weird, but well-defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also passed as an out-parameter to the call, meaning that the
server will set its value. In general, passing the same parameter as both an input and output parameter is safe: the Ice run time will correctly
handle all locking and memory-management activities.

Optional Parameters in C++

The mapping for optional parameters is the same as for required parameters, except each optional parameter is encapsulated inan | ceUt i
| :: Opti onal value. Consider the following operation:

Slice

optional (1)
val ue) ;

int execute(optional (2) string parans, out optional (3) float

The C++ mapping for this operation is shown below:

248

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Operations#Operations-optional

Ice 3.6.4 Documentation

C++
lceltil::Optional<lce::Int>
execute(const lceUtil::Optional <std::string>& parans,
IceUtil::Optional <lce::Fl oat>& value, ...);
The constructors provided by the | ceUti | : : Opti onal template simplify the use of optional parameters:
C++
lceUtil::Optional<lce::Int> i;
lceUtil::Optional <lce::Float> v;

i = proxy->execute("--file log.txt", v); // string converted to
Opti onal <string>

i = proxy->execute(lceUtil::None, v); /1 parans is unset
if(v)
cout << "value =" << v.get() << endl

For an optional output parameter, the Ice run time resets the client's Opt i onal instance if the server does not supply a value for the
parameter, therefore it is safe to pass an Opt i onal instance that already has a value.

A well-behaved program must not assume that an optional parameter always has a value.

Chained Invocations in C++

Consider the following simple interface containing two operations, one to set a value and one to get it:

Slice

i nterface Nane {
string get Name();
voi d set Name(string nane);

b

Suppose we have two proxies to interfaces of type Nane, pl and p2, and chain invocations as follows:

C++

p2- >set Nane(pl- >get Nanme());

This works exactly as intended: the value returned by p1 is transferred to p2. There are no memory-management or exception safety issues
with this code.

249 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Exception Handling in C++

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user
exceptions. Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

b

interface Child {
voi d askToC eanUp() throws Tantrum

b

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or more operation invocations in a t r y- cat ch block:

C++
ChildPrx child = ...; /1l Get proxy...
try {
chi | d->askTod eanUp(); /Il Gve it atry...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be dealt with by exception handlers higher in the hierarchy. For example:

250 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716053#C++MappingforExceptions-RuntimeException
https://doc.zeroc.com/pages/viewpage.action?pageId=16716053#C++MappingforExceptions-UserException
https://doc.zeroc.com/pages/viewpage.action?pageId=16716053#C++MappingforExceptions-UserException

Ice 3.6.4 Documentation

C++
voi d run()
{
ChildPrx child = ...; /1 Get proxy...
try {
chil d->askToCl eanUp(); // Gve it atry...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;
chil d->scol d(); /1 Recover fromerror...
}
chi |l d->praise(); /1 Gve positive feedback...
}
i nt
mai n(int argc, char* argv[])
{
int status = 1;
try {
/1
run();
/1
status = 0O;
} catch (const Ilce::Exception& e) {
cerr << "Unexpected run?tinme error: " << e << endl;
}
/1
return status;
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application.)

For efficiency reasons, you should always catch exceptions by const reference. This permits the compiler to avoid calling the exception's
copy constructor (and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters in C++
The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may have

still have its original value or may have been changed by the operation's implementation in the target object. In other words, for
out-parameters, Ice provides the weak exception guarantee [1] but does not provide the strong exception guarantee.

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be justified.

Exceptions and Return Values in C++
For return values, C++ provides the guarantee that a variable receiving the return value of an operation will not be overwritten if an exception

is thrown. (Of course, this guarantee holds only if you do not use the same variable as both an out-parameter and to receive the return value
of an invocation).

251 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

See Also

® Operations

® Slice for a Simple File System

® C++ Mapping for Interfaces
References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

252 Copyright 2017, ZeroC, Inc.

http://amzn.com/0201615622

Ice 3.6.4 Documentation

C++ Mapping for Optional Values

On this page:

® The IceUtil::Optional Template
® The IceUtil::None Value

ThelceUtil:: Optional Template

The C++ mapping uses a template to hold the values of optional data members and parameters:

253 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Operations#Operations-optional

Ice 3.6.4 Documentation

C++

namespace |lceUtil {
t enpl at e<t ypenane T>
cl ass Optional {
publi c:
typedef T el enent _type;

Optional ();
Opti onal (NoneType) ;
Opti onal (const T&);

t enpl at e<t ypenane Y>
Optional (const Optional <Y>&)

Optional (const Optional & r);

Opti onal & oper at or =(NoneType) ;
Opti onal & operat or=(const T&)

t enpl at e<t ypenane Y>
Optional & operator=(const Optional <Y>&)
Opti onal & operat or=(const Optional &

const T& get() const;

T& get();

const T* operator->() const;
T* operator->();

const T& operator*() const;
T& operator*();

operator bool () const;
bool operator!() const;

voi d swap(Optional & ot her);

Thelceltil:: Optional template provides constructors and assignment operators that allow you to initialize an instance using the
element type or an existing optional value. The default constructor initializes an instance to an unset condition. The get method and
dereference operators retrieve the current value held by the instance, or throw | ceUti | : : Opti onal Not Set Except i on if no value is
currently set. Use the bool or! operators to test whether the instance has a value prior to dereferencing it. Finally, the swap method
exchanges the state of two instances.

ThelceUtil:: None Value

254 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

The template includes a constructor and assignment operator that accept NoneType. Ice defines an instance of this type, | ceUti | : : None,
that you can use to initialize (or reset) an Opt i onal instance to an unset condition:

C++
lceUtil::Optional<int>i = 5;
i = lceUtil::None;
assert(!i); // true
You canpass | ceUti|:: None anywhere an | ceUtil:: Opti onal value is expected.

See Also

® Optional Data Members
® QOperations
® C++ Mapping for Operations

255 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++ Mapping for Classes

On this page:

Basic C++ Mapping for Classes
Inheritance from Ice::Object in C++
Class Data Members in C++

Class Constructors in C++

Class Operations in C++

Class Factories in C++

Basic C++ Mapping for Classes

A Slice class is mapped to a C++ class with the same name. The generated class contains a public data member for each Slice data
member (just as for structures and exceptions), and a virtual member function for each operation. Consider the following class definition:

Slice
class Ti meOk Day {
short hour; /1 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59
string format(); /! Return time as hh: nm ss
}

The Slice compiler generates the following code for this definition:

256 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

cl ass Ti meX Day;

typedef Icelnternal:: ProxyHandl e<l ceProxy: : Ti meOf Day> Ti meOf DayPr x;
typedef Icelnternal::Handl e<Ti meCf Day> Ti meCf DayPtr ;

class TimeODay : virtual public Ice:: ject {
publi c:

I ce:: Short hour;

I ce:: Short minute;

I ce:: Short second;

virtual std::string format() = O;

TimeCf Day() {};
Ti meOf Day(Il ce:: Short, Ilce::Short, lce::Short);

virtual bool ice_isA(const std::string&)
virtual const std::string& ice_id();

static const std::string& ice_staticld();

typedef Ti meOf DayPrx ProxyType
typedef Ti meOf DayPtr PointerType;

11

The ProxyType and PointerType definitions are for template programming.

There are a number of things to note about the generated code:

1. The generated class Ti meOf Day inherits from | ce: : Qbj ect . This means that all classes implicitly inherit from | ce: : Qbj ect,
which is the ultimate ancestor of all classes. Note that | ce: : Cbj ect is not the same as | ceProxy: : | ce: : Cbj ect . In other
words, you cannot pass a class where a proxy is expected and vice versa.

. The generated class contains a public member for each Slice data member.

The generated class has a constructor that takes one argument for each data member, as well as a default constructor.

The generated class contains a pure virtual member function for each Slice operation.

The generated class contains additional member functions: i ce_i sA,ice_id,ice_staticld,andice_factory.

. The compiler generates a type definition Ti neOf Day Pt r . This type implements a smart pointer that wraps dynamically-allocated
instances of the class. In general, the name of this type is <cl ass- nane>Pt r . Do not confuse this with <cl ass- name>Pr x — that
type exists as well, but is the proxy handle for the class, not a smart pointer.

ERIIARN

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from I ce: : Obj ect in C++
Like interfaces, classes implicitly inherit from a common base class, | ce: : Cbj ect . However, as shown in the figure below, classes

inherited from | ce: : Obj ect instead of | ce: : Obj ect Pr x (which is at the base of the inheritance hierarchy for proxies). As a result, you
cannot pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

257 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716054#C++MappingforInterfaces-proxytype

Ice 3.6.4 Documentation

loe: b jectPrx

Proxies...

Classes...

Inheritance from | ce: : Cbj ect Prx and | ce: : Obj ect .

| ce: : Obj ect contains a number of member functions:

nanespace |ce {
cl ass Obj ect

publi c:
vi rtual

public virtual

bool

C++

i ce_isA(const std::string&,

const Current& = Current()) const;

vi rtual

vi rtual
nt()) const;

vi rtual
onst ;

void ice_ping(const Currenté&

I celnternal:: Shared {

= Current()) const;

std::vector<std::string> ice_ids(const Current& = Curre

const std::string& ice_id(const Current& = Current()) c

static const std::string& ice_staticld();
Obj ectPtr ice_clone() const;

vi rt ual

vi rtual
vi rtual

vi rt ual

vi rtual

vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual

void ice_preMarshal ();
voi d i ce_postUnnarshal ();

void ice_collectabl e(bool);

Di spat chStatus ice_dispatch(
| ce: : Request &,
const Di spatchlnterceptorAsyncCal | backPtr& = 0);

bool
bool
bool
bool
bool
bool

oper at or==(const Obj ect&) const;
operator!=(const Object&) const;
oper at or <(const Cbject& const;
oper at or <=(const Cbject&) const;
operator>(const Cbject& const;
oper at or >=(const Obj ect &) const;

The member functions of | ce: : Obj ect behave as follows:

® jce_isA

258

Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

This function returns t r ue if the object supports the given type ID, and f al se otherwise.

i ce_ping
As for interfaces, i ce_pi ng provides a basic reachability test for the class. Note that i ce_pi ng is normally only invoked on the
proxy for a class that might be remote because a class instance that is local (in the caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Obj ect .

ice_id
This function returns the actual run-time type ID for a class. If you call i ce_i d through a smart pointer to a base instance, the
returned type id is the actual (possibly more derived) type ID of the instance.

ice_staticld
This function returns the static type ID of a class.

ice_clone
This function makes a polymorphic shallow copy of a class.

i ce_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

i ce_post Unnar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

ice_collectable
Determines whether this object, and by extension the graph of all objects reachable from this object, are eligible for garbage
collection when all external references to the graph have been released.

i ce_di spatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

oper at or ==

operator!=

operat or <

oper at or <=

oper at or >

oper at or >=

The comparison operators permit you to use classes as elements of STL sorted containers. Note that sort order, unlike for structures
, is based on the memory address of the class, not on the contents of its data members of the class.

Class Data Members in C++

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member. Optional data members are mapped to instances of the | ceUti | : : Opti on
al template.

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the Ti meOf Day class shown below has the pr ot ect ed metadata directive applied
to each of its data members:

259

Slice

class Ti meOk Day {
["protected"] short hour; /1 0 - 23
["protected"] short nminute; // 0 - 59
["protected"] short second; // 0 - 59
string format(); /1 Return tinme as hh: nm ss

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Smart+Pointers+for+Classes#SmartPointersforClasses-polymorphic
https://doc.zeroc.com/display/Ice36/Smart+Pointers+for+Classes#SmartPointersforClasses-garb
https://doc.zeroc.com/display/Ice36/Smart+Pointers+for+Classes#SmartPointersforClasses-garb
https://doc.zeroc.com/pages/viewpage.action?pageId=16716049#C++MappingforStructures-default

Ice 3.6.4 Documentation

The Slice compiler produces the following generated code for this definition:

C++

class TimeOfDay : virtual public Ice::Qbject {
publi c:

virtual std::string format() = O;
11

pr ot ect ed:
| ce::Short hour;

I ce::Short m nute;
| ce:: Short second;

b

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the Ti meCf Day class as follows:

Slice
["protected"] class TinmeODay {
short hour; /1 0 - 23
short m nute; /1 0 - 59
short second,; /1 0 - 59
string format(); /!l Return tinme as hh:nmmss
s

Class Constructors in C++

Classes have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences,
and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members
having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the
member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside the legal
range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value. Optional data members are unset unless they declare
default values.

Classes also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement. For each optional data member, its corresponding constructor parameter uses the same mapping as for oper
ation parameters, allowing you to pass its initial value or | ceUt i | : : None to indicate an unset value.

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order. For example:

260 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716055#C++MappingforOperations-optional
https://doc.zeroc.com/pages/viewpage.action?pageId=16716055#C++MappingforOperations-optional

Ice 3.6.4 Documentation

Slice
cl ass Base {
int i;
i
cl ass Derived extends Base {
string s;
s
This generates:
C++
class Base : virtual public ::lce::ject
{
publi c:
cilcer:Int i
Base() {};
explicit Base(::lce::Int);
11

s

class Derived : public Base

{

publi c:
sistdi:string s;
Derived() {};
Derived(::lce::Int, const ::std::string&;
11

s

Note that single-parameter constructors are defined as expl i ci t, to prevent implicit argument conversions.

By default, derived classes derive non-virtually from their base class. If you need virtual inheritance, you can enable it using the [" cpp: vi r
tual "] metadata directive.

Class Operations in C++

Operations of classes are mapped to pure virtual member functions in the generated class. This means that, if a class contains operations

(such as the f or mat operation of our Ti meOf Day class), you must provide an implementation of the operation in a class that is derived from
the generated class. For example:

261 Copyright 2017, ZeroC, Inc.

262

Ice 3.6.4 Documentation

C++

class TimeOfDayl : virtual public TinmedO Day {
publi c:
virtual std::string format() {

std::ostringstreams;
s << setwm(2) << setfill('0") << hour << ":";
s << setwm(2) << setfill('0") << minute << ":";
s << setw(2) << setfill('0") << second;
return s.c_str();

pr ot ect ed:
virtual ~TinmeOrDayl () {} // Optional
s

We discuss the motivation for the protected destructor in Preventing Stack-Allocation of Class Instances.

Class Factories in C++

Having created a class such as Ti neXf Dayl , we have an implementation and we can instantiate the Ti neOf Day| class, but we cannot
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Tine {
Ti meOf Day get();
s

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neOf Day class. However, Ti nreO
f Day is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a Ti mreO
f Dayl class that implements the abstract f or mat operation of the Ti meCf Day abstract class. In other words, we must provide the Ice run

time with a factory that knows that the Ti meCf Day abstract class has a Ti meOf Day| concrete implementation. The | ce: : Conmuni cat or i
nterface provides us with the necessary operations:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Smart+Pointers+for+Classes#SmartPointersforClasses-stack

Ice 3.6.4 Documentation

Slice

nmodul e I ce {
| ocal interface bjectFactory {
Ohj ect create(string type);
voi d destroy();
s

| ocal interface Conmmunicator {
voi d addObj ect Fact ory(oj ect Factory factory, string id);
bj ect Factory findObj ectFactory(string id);
11
b
i

To supply the Ice run time with a factory for our Ti meCf Day!| class, we must implement the Cbj ect Fact ory interface:

Slice

nmodul e I ce {
| ocal interface ObjectFactory {
Obj ect create(string type);
voi d destroy();
i
s

The object factory's cr eat e operation is called by the Ice run time when it needs to instantiate a Ti meCf Day class. The factory's dest r oy
operation is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

C++

class ObjectFactory : public Ice:: CbjectFactory {
publi c:
virtual lce::ObjectPtr create(const std::string& type) {
assert(type == M: TimeODay::ice_staticld());
return new Ti meCf Dayl ;

}
virtual void destroy() {}

b

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meOf Day class, the type IDis": : M : Ti neOf Day" . Our
implementation of cr eat e checks the type ID: if it matches, the method instantiates and returns a Ti meCf Day| object. For other type IDs,
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the i ce_st at i cl d method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing

263 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise
NoObj ect Fact or yExcepti on. By using i ce_st ati cl d instead, we avoid any risk of a misspelled or obsolete type ID, and we can
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

C++

I ce:: ComunicatorPtr ic = ...;
i c- >addbj ect Fact ory(new Obj ect Factory, M:TineO Day::ice_staticld());

Now, whenever the Ice run time needs to instantiate a class with the type ID ": : M : Ti meOf Day", it calls the cr eat e method of the
registered Cbj ect Fact ory instance.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to
clean up any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator —
if you do, the Ice run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy
, and cr eat e will not be called once dest r oy has been called. However, calls to cr eat e can be made concurrently.

Note that you cannot register a factory for the same type ID twice: if you call addCbj ect Fact or y with a type ID for which a factory is
registered, the Ice run time throws an Al r eadyRegi st er edExcepti on.

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes

Smart Pointers for Classes

C++ Mapping for Operations

C++ Mapping for Optional Values
Asynchronous Method Invocation (AMI) in C++
Dispatch Interceptors

264 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Smart Pointers for Classes

On this page:

Automatic Memory Management with Smart Pointers
Copying and Assignment of Classes

Polymorphic Copying of Classes

Null Smart Pointers

Preventing Stack-Allocation of Class Instances
Smart Pointers and Constructors

Smart Pointers and Exception Safety

Smart Pointers and Cycles

Garbage Collection of Class Instances

Smart Pointer Comparison

Automatic Memory Management with Smart Pointers

A recurring theme for C++ programmers is the need to deal with memory allocations and deallocations in their programs. The difficulty of
doing so is well known: in the face of exceptions, multiple return paths from functions, and callee-allocated memory that must be deallocated
by the caller, it can be extremely difficult to ensure that a program does not leak resources. This is particularly important in multi-threaded
programs: if you do not rigorously track ownership of dynamic memory, a thread may delete memory that is still used by another thread,
usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart pointers use reference counting to keep track of each class
instance and, when the last reference to a class instance disappears, automatically delete the instance.

Smart pointer classes are an example of the RAIl (Resource Acquisition Is Initialization) idiom [1].

Smart pointers are generated by the Slice compiler for each class type. For a Slice class <cl ass- name>, the compiler generates a C++
smart pointer called <cl ass- name>Pt r . Rather than showing all the details of the generated class, here is the basic usage pattern:
whenever you allocate a class instance on the heap, you simply assign the pointer returned from newto a smart pointer for the class.
Thereafter, memory management is automatic and the class instance is deleted once the last smart pointer for it goes out of scope:

C++

{ /'l Open scope
Ti meCf DayPtr tod = new TineOfDayl; // Allocate instance
/1 Initialize...
t od- >hour = 18;

tod->m nute = 11;
t od- >second = 15;
/1
} /1 No menory | eak here!

As you can see, you use oper at or - > to access the members of the class via its smart pointer. When the t od smart pointer goes out of
scope, its destructor runs and, in turn, the destructor takes care of calling del et e on the underlying class instance, so no memory is leaked.

A smart pointer performs reference counting of its underlying class instance:

® The constructor of a class sets its reference count to zero.

® |nitializing a smart pointer with a dynamically-allocated class instance causes the smart pointer to increment the reference count of
the instance by one.

® Copy-constructing a smart pointer increments the reference count of the instance by one.

® Assigning one smart pointer to another increments the target's reference count and decrements the source's reference count.
(Self-assignment is safe.)

® The destructor of a smart pointer decrements the reference count by one and calls del et e on its class instance if the reference
count drops to zero.

265 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Suppose that we default-construct a smart pointer as follows:

C++

Ti meOf DayPtr tod;

This creates a smart pointer with an internal null pointer.

tod

Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; the assignment to the smart pointer causes the smart
pointer to increment the instance's reference count:

C++

tod = new Ti meOXf Dayl ; /1l Refcount == 1

The resulting situation is shown below:

K
tod £

Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the smart pointer (not the underlying instance) and increments
the reference count of the instance:

C++

Ti meCf DayPtr tod2(tod); // Copy-construct tod2
Ti meOf DayPtr tod3;
tod3 = tod; /1 Assign to tod3

Here is the situation after executing these statements:

tod

tod?2

todld

266 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to one of the original smart pointers, t od2:

C++

tod2 = new Ti nef Dayl ;

This decrements the reference count of the instance originally denoted by t 0od2 and increments the reference count of the instance that is
assigned to t od2. The resulting situation becomes the following:

tod

tod2

tod3

Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

C++

tod = 0; /1 Cear handle

As you would expect, this decrements the reference count of the instance, as shown here:

tod

tod2

tod3

Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to it, the smart pointer decrements the reference count of its
instance; if the reference count drops to zero, the smart pointer calls del et e to deallocate the instance. The following code snippet
deallocates the instance on the right by assigning t 0od2 to t 0d3:

C++

tod3 = tod2

267 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

This results in the following situation:

tod
o
(2 . todZ
\a_,f’é“‘-_h__h__h

T tod3

Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so you can copy and assign class instances:

C++

TimeOf DayPtr tod = new TinmeOf'Dayl (2, 3, 4); // Create instance
Ti meOf DayPtr tod2 = new Ti neCf Dayl (*t od); /1 Copy instance

Ti meOf DayPtr tod3 new Ti mef Dayl ;
*tod3 = *tod; /1l Assign instance

Copying and assignment in this manner performs a memberwise shallow copy or assignment, that is, the source members are copied into
the target members; if a class contains class members (which are mapped as smart pointers), what is copied or assigned is the smart
pointer, not the target of the smart pointer.

To illustrate this, consider the following Slice definitions:

Slice

cl ass Node {
int i;
Node next;
H

Assume that we initialize two instances of type Node as follows:

268 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

NodePtr pl new Node(99, new Node(48, 0));
NodePtr p2 = new Node(23, 0);

11

*p2 = *pl; // Assignnent

After executing the first two statements, we have the situation shown below:

pl

P2

Class instances prior to assignment.

After executing the assignment statement, we end up with this result:

pl

P2

Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract classes, such as our Ti neOf Day| class, for example:

269 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

class Ti meXf Dayl ;
typedef IceUtil::Handl e<Ti neCf Dayl > Ti meOf Dayl Ptr;

class TimeOf Dayl : virtual public TinmedO Day {
/'l As before...

b

The default copy constructor and assignment operator will perform a memberwise copy or assignment of your implementation class:

C++

Ti reOf Dayl Ptr todl new Ti neXf Dayl ;
TimeO Dayl Ptr tod2 = new Ti meOf Dayl (*t odl); /'l Make copy

Of course, if your implementation class contains raw pointers (for which a memberwise copy would almost certainly be inappropriate), you
must implement your own copy constructor and assignment operator that take the appropriate action (and probably call the base copy
constructor or assignment operator to take care of the base part).

Note that the preceding code uses Ti meCf Dayl Pt r as a typedef for | ceUt i | : : Handl e<Ti meOf Dayl >. This class is a template that
contains the smart pointer implementation. If you want smart pointers for the implementation of an abstract class, you must define a smart
pointer type as illustrated by this type definition.

Copying and assignment of classes also works correctly for derived classes: you can assign a derived class to a base class, but not
vice-versa; during such an assignment, the derived part of the source class is sliced, as per the usual C++ assignment semantics.

Polymorphic Copying of Classes

As shown in Inheritance from | ce: : Cbj ect , the C++ mapping generates an i ce_cl one member function for every class:

C++

class TimeODay : virtual public lce:: ject {
publi c:
11

virtual lce::CObjectPtr ice_clone() const;

H

This member function makes a polymorphic shallow copy of a class: members that are not class members are deep copied; all members that
are class members are shallow copied. To illustrate, consider the following class definition:

270 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716057#C++MappingforClasses-object

Ice 3.6.4 Documentation

Slice

cl ass Node {
Node ni1;
Node n2;

b

Assume that we have an instance of this class, with the n1 and n2 members initialized to point at separate instances, as shown below:

b

™,

— \\

———

n\ /

e

A class instance pointing at two other instances.

If we call i ce_cl one on the instance on the left, we end up with this situation:

n;\‘) ‘ﬁaﬁ
- \ '

/\\>\ N
T ol

Nt

71 5 v
pl *'1\ n ._l'L .'I
i N /’

\““-H_,__Fﬂ‘/ b, S

Resulting graph after calling i ce_cl one on the left-most instance.

As you can see, class members are shallow copied, that is, i ce_cl one makes a copy of the class instance on which it is invoked, but does
not copy any class instances that are pointed at by the copied instance.

Note thati ce_cl one returns a value of type | ce: : Qbj ect Pt r, to avoid problems with compilers that do not support covariant return
types. The generated Pt r classes contain a dynamni cCast member that allows you to safely down-cast the return value of i ce_cl one. For
example, the code to achieve the situation shown in the illustration above, looks as follows:

271 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

NodePtr pl new Node(new Node, new Node);
NodePtr p2 = NodePtr::dynani cCast(pl->ice_clone());

i ce_cl one is generated by the Slice compiler for concrete classes (that is, classes that do not have operations). However, because classes
with operations are abstract, the generated i ce_cl one for abstract classes cannot know how to instantiate an instance of the derived
concrete class (because the name of the derived class is not known). This means that, for abstract classes, the generated i ce_cl one throw
s aCl oneNot | npl enent edExcepti on.

If you want to clone the implementation of an abstract class, you must override the virtual i ce_cl one member in your concrete
implementation class. For example:

C++

class TinmeOfDayl : public TimeO Day {

publi c:
virtual lce::ObjectPtr ice_clone() const
{
return new Ti meOf Dayl (*t hi s);
}
i

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This means that if you attempt to dereference a null smart pointer,
yougetanlceUtil:: Null Handl eExcepti on:

C++
Ti ref DayPtr tod; /1l Construct null handle
try {
tod->m nute = 0; /1 Dereference null handle
assert(fal se); /1 Cannot get here
} catch (const IceUtil::NullHandl eException&) {
;[OK, expected
} catch (...) {
assert(fal se); /1 Must get Nul |l Handl eExcepti on
}

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allocating class instances on the stack or in static variables is
pragmatically useless because all the Ice APIs expect parameters that are smart pointers, not class instances. This means that, to do

272 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

anything with a stack-allocated class instance, you must initialize a smart pointer for the instance. However, doing so does not work because
it inevitably leads to a crash:

C++
{ /'l Enter scope
Ti mref Dayl t; /1 Stack-all ocated class instance
Ti meOf DayPtr todp; /! Handl e for a TineOfDay instance
todp = &t; /1 Legal, but dangerous
11
} /1 Leave scope, |oom ng crash!

This goes badly wrong because, when t odp goes out of scope, it decrements the reference count of the class to zero, which then calls del e
t e on itself. However, the instance is stack-allocated and cannot be deleted, and we end up with undefined behavior (typically, a core
dump).

The following attempt to fix this is also doomed to failure:

C++
{ /1 Enter scope
Ti mef Dayl t; /1 Stack-all ocated class instance
Ti meCf DayPtr todp; /1 Handle for a TineOfDay instance
todp = &t; /1 Legal, but dangerous
/.
todp = 0; /1 Crash inmm nent!
}

This code attempts to circumvent the problem by clearing the smart pointer explicitly. However, doing so also causes the smart pointer to
drop the reference count on the class to zero, so this code ends up with the same call to del et e on the stack-allocated instance as the
previous example.

The upshot of all this is: never allocate a class instance on the stack or in a static variable. The C++ mapping assumes that all class
instances are allocated on the heap and no amount of coding trickery will change this.

You could abuse the __set NoDel et e member to disable deallocation, but we strongly discourage you from doing this.

You can prevent allocation of class instances on the stack or in static variables by adding a protected destructor to your implementation of
the class: if a class has a protected destructor, allocation must be made with new, and static or stack allocation causes a compile-time error.
In addition, explicit calls to del et e on a heap-allocated instance also are flagged at compile time.

Tip

You may want to habitually add a protected destructor to your implementation of abstract Slice classes to protect yourself from
accidental heap allocation, as shown in Class Operations. (For Slice classes that do not have operations, the Slice compiler
automatically adds a protected destructor.)

Smart Pointers and Constructors

Slice classes inherit their reference-counting behavior from the | ceUt i | : : Shar ed class, which ensures that reference counts are managed

273 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=16716057#C++MappingforClasses-ClassOperationsinC++

Ice 3.6.4 Documentation

in a thread-safe manner. When a stack-allocated smart pointer goes out of scope, the smart pointer invokes the __decRef function on the
reference-counted object. Ignoring thread-safety issues, __decRef is implemented like this:

C++

voi d
IceUtil::Shared::__decRef()
{
if (--_ref == 0 & ! _noDel ete)
del ete this;

In other words, when the smart pointer calls __decRef on the pointed-at instance and the reference count reaches zero (which happens
when the last smart pointer for a class instance goes out of scope), the instance self-destructs by calling del ete thi s.

However, as you can see, the instance self-destructs only if _noDel et e is false (which it is by default, because the constructor initializes it
to false). You can call __set NoDel et e(true) to prevent this self-destruction and, later, call __set NoDel et e(f al se) to enable it again.
This is necessary if, for example, a class in its constructor needs to pass t hi s to another function:

C++

voi d sonmeFunction(const Ti neCf DayPtré& t)

{
/1

Ti mrexf Dayl : : Ti meOf Dayl ()
{

someFunction(this); // Trouble | oom ng here!

At first glance, this code looks innocuous enough. While Ti meCf Day! is being constructed, it passes t hi s to soneFunct i on, which
expects a smart pointer. The compiler constructs a temporary smart pointer at the point of call (because the smart pointer template has a
single-argument constructor that accepts a pointer to a heap-allocated instance, so the constructor acts as a conversion function). However,
this code fails badly. The Ti neOf Day| instance is constructed with a statement such as:

C++

Ti reOf DayPtr tod = new Ti meOf Dayl ;

The constructor of Ti meCf Day| is called by oper at or newand, when the constructor starts executing, the reference count of the instance
is zero (because that is what the reference count is initialized to by the Shar ed base class of Ti meCf Day|). When the constructor calls som
eFunct i on, the compiler creates a temporary smart pointer, which increments the reference count of the instance and, once soneFuncti o
n completes, the compiler dutifully destroys that temporary smart pointer again. But, of course, that drops the reference count back to zero
and causes the Ti meCf Day| instance to self-destruct by calling del et e t hi s. The net effect is that the call to new Ti meCf Dayl returns
a pointer to an already deleted object, which is likely to cause the program to crash.

To get around the problem, you can call __set NoDel et e:

274 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

C++

Ti meCf Dayl : : Ti meCOf Dayl ()

{
__set NoDel ete(true);
someFunction(this);
__set NoDel ete(fal se);
}

The code disables self-destruction while soreFunct i on uses its temporary smart pointer by calling __set NoDel et e(t rue) . By doing
this, the reference count of the instance is incremented before someFunct i on is called and decremented back to zero when someFuncti o
n completes without causing the object to self-destruct. The constructor then re-enables self-destruction by calling __set NoDel et e(f al se
) before returning, so the statement

C++

Ti meOf DayPtr tod = new Ti meOf Dayl ;

does the usual thing, namely to increment the reference count of the object to 1, despite the fact that a temporary smart pointer existed while
the constructor ran.

In general, whenever a class constructor passes t hi s to a function or another class that accepts a smart pointer, you must
temporarily disable self-destruction.

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to leave a scope containing a stack-allocated smart
pointer, the C++ run time ensures that the smart pointer's destructor is called, so no resource leaks can occur:

C++

{ /'l Enter scope...
Ti meOf DayPtr tod = new TinmeODayl; // Allocate instance
sonmeFuncThat M ght Throw() ; /1 Mght throw. ..
Il

} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of t od runs and ensures that it deallocates the underlying class instance.

There is one potential pitfall you must be aware of though: if a constructor of a base class throws an exception, and another class instance
holds a smart pointer to the instance being constructed, you can end up with a double deallocation. You can use the __set NoDel et e mech
anism to temporarily disable self-destruction in this case, as described above.

275 Copyright 2017, ZeroC, Inc.

Ice 3.6.4 Documentation

Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal with cyclic dependencies. For example, consider the following
simple self-referential class:

Slice

cl ass Node {
int val;
Node next;

s

Intuitively, this class implements a linked list of nodes. As long as there are no cycles in the list of nodes, everything is fine, and our smart
pointers will correctly deallocate the class instances. However, if we introduce a cycle, we have a problem:

C++

{ /1 Qpen scope...

NodePtr nl = new Node; // NIl refcount == 1

NodePtr n2 = new Node; // N2 refcount == 1

nl->next = n2; /1l N2 refcount == 2

n2->next = nil; /1 N1 refcount == 2
} // Destructors run: /Il N2 refcount == 1,

/1 N1 refcount == 1, nenory | eak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustration, let us assume that n1's node is called N1, and n2's
node is called N2. When we allocate the N1 instance and assign it to n1, the smart pointer n1 increments N1's reference count to 1.
Similarly, N2's reference count is 1 after allocating the node and assigning it to n2. The next two statements set up a cyclic dependency
between n1 and n2 by making their next pointers point at each other. This sets the reference count of both N1 and N2 to 2. When the
enclosing scope closes, the destructor of n2 is called first and decrements N2's reference count to 1, followed by the destructor of n1, which
decrements N1's reference count to 1. The net effect is that neither reference count ever drops to zero, so both N1 and N2 are leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference counts for deallocation: if a cyclic dependency exists anywhere
in a graph (possibly via many intermediate nodes), all nodes in the cycle are leaked.

To avoid memory leaks due to such cycles, Ice for C++ includes a garbage collection facility. The facility identifies class instances that are
part of a cycle but are no longer reachable from the program and deletes such instances. Applications must assist the Ice run time in this
process by indicating when a graph is eligible for collection. For eligible graphs, Ice makes a sweep of the graph each time a reference count
to one of the graph's objects is decremented.

Two components of the garbage collection facility influence its behavior:

® Thelce. Col | ect Obj ect s property determines whether Ice assumes all object graphs are eligible for collection by default.
® The Obj ect::ice_col |l ectabl e(bool) method allows an application to indicate whether an object (and by extension, the graph
of objects reachable via this object) is eligible for collection.

The correct operation of the garbage collection facility relies on the assumption that all eligible object graphs are immutable. If an
application needs to make changes that could affect the structure of the graph, it must disable collection for that graph by calling i

276 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice36/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.CollectObjects

Ice 3.6.4 Documentation

ce_col | ect abl e(fal se) on any root object in the graph. Once the changes are complete, call i ce_col | ect abl e(true) on
any root object in the graph to make it eligible again. Modifying the structure of an eligible graph has undefined behavior.

In general, there are two strategies you can use for garbage collection depending on your application's requirements:

1. Setlce. Col | ect Obj ect s=1 so that Ice assumes all object graphs are eligible for collection by default. This is recommended for
applications that receive object graphs but rarely modify them. For those situations where an application needs to modify a graph,

surround the modification with callsto i ce_col | ect abl e as shown below:

C++

NodePtr graph = proxy->getGaph(); // Eligible by default
graph->i ce_col | ect abl e(fal se);

/1 nmodify graph...

gr aph->i ce_col | ect abl e(true);

graph = 0; // Starts a sweep

2. Setl ce. Col | ect Obj ect s=0 (the default setting) so that Ice does not attempt to collect object graphs except for those explicitly
marked by the application. Use this setting for applications that typically modify the structure of the graphs they receive. Call i ce_c

ol | ect abl e(true) to mark a graph as eligible:

C++

NodePtr graph = proxy->getGaph(); // Ineligible by default
/1 nodify graph...

graph->i ce_col | ect abl e(true);

graph = 0; // Starts a sweep

As mentioned earlier, an application does not take any action to force a collection; rather, the collection occurs automatically when a

reference count is decremented.

To minimize overhead, GC-related behavior is only enabled for those Slice classes whose data members can refer to Ice objects.

Furthermore, graph traversal only occurs for those objects that are part of a cycle and marked as collectable.

Smart Pointer Comparison

As for proxy handles, class handles support the comparison operators ==, ! =, and <. This allows you to use class handles in STL sorted
containers. Be aware that, for smart pointers, object identity is not used for the comparison, because class instances do not have identity.
Instead, these operators simply compare the memory address of the classes they poin