
Intel® Embree
High Performance Ray Tracing Kernels

Version 3.13.2
October 26, 2021

2

Contents

1 Embree Overview 3
1.1 Supported Platforms . 3
1.2 Version History . 4

2 Installation of Embree 19
2.1 Windows MSI Installer . 19
2.2 Windows ZIP File . 19
2.3 Linux tar.gz Files . 19
2.4 macOS PKG Installer . 20
2.5 macOS ZIP file . 20

3 Compiling Embree 21
3.1 Linux and macOS . 21
3.2 Windows . 23
3.3 CMake Configuration . 24

4 Using Embree 27

5 Embree API 28
5.1 Device Object . 28
5.2 Scene Object . 29
5.3 Geometry Object . 29
5.4 Ray Queries . 30
5.5 Point Queries . 30
5.6 Collision Detection . 30
5.7 Miscellaneous . 31

6 Upgrading from Embree 2 to Embree 3 32
6.1 Device . 32
6.2 Scene . 33
6.3 Geometry . 33
6.4 Buffers . 34
6.5 Miscellaneous . 35

7 Embree API Reference 37
7.1 rtcNewDevice . 37
7.2 rtcRetainDevice . 39
7.3 rtcReleaseDevice . 40
7.4 rtcGetDeviceProperty . 41
7.5 rtcGetDeviceError . 44
7.6 rtcSetDeviceErrorFunction . 45
7.7 rtcSetDeviceMemoryMonitorFunction 46
7.8 rtcNewScene . 48
7.9 rtcGetSceneDevice . 49
7.10 rtcRetainScene . 50

CONTENTS 3

7.11 rtcReleaseScene . 51
7.12 rtcAttachGeometry . 52
7.13 rtcAttachGeometryByID . 53
7.14 rtcDetachGeometry . 54
7.15 rtcGetGeometry . 55
7.16 rtcGetGeometryThreadSafe . 56
7.17 rtcCommitScene . 57
7.18 rtcJoinCommitScene . 58
7.19 rtcSetSceneProgressMonitorFunction 60
7.20 rtcSetSceneBuildQuality . 61
7.21 rtcSetSceneFlags . 62
7.22 rtcGetSceneFlags . 63
7.23 rtcGetSceneBounds . 64
7.24 rtcGetSceneLinearBounds . 65
7.25 rtcNewGeometry . 66
7.26 RTC_GEOMETRY_TYPE_TRIANGLE 69
7.27 RTC_GEOMETRY_TYPE_QUAD 71
7.28 RTC_GEOMETRY_TYPE_GRID 73
7.29 RTC_GEOMETRY_TYPE_SUBDIVISION 74
7.30 RTC_GEOMETRY_TYPE_CURVE 77
7.31 RTC_GEOMETRY_TYPE_POINT 81
7.32 RTC_GEOMETRY_TYPE_USER 83
7.33 RTC_GEOMETRY_TYPE_INSTANCE 84
7.34 RTCCurveFlags . 85
7.35 rtcRetainGeometry . 86
7.36 rtcReleaseGeometry . 87
7.37 rtcCommitGeometry . 88
7.38 rtcEnableGeometry . 89
7.39 rtcDisableGeometry . 90
7.40 rtcSetGeometryTimeStepCount 91
7.41 rtcSetGeometryTimeRange . 92
7.42 rtcSetGeometryVertexAttributeCount 93
7.43 rtcSetGeometryMask . 94
7.44 rtcSetGeometryBuildQuality . 95
7.45 rtcSetGeometryBuffer . 96
7.46 rtcSetSharedGeometryBuffer . 97
7.47 rtcSetNewGeometryBuffer . 98
7.48 RTCFormat . 99
7.49 RTCBufferType . 101
7.50 rtcGetGeometryBufferData . 103
7.51 rtcUpdateGeometryBuffer . 104
7.52 rtcSetGeometryIntersectFilterFunction 105
7.53 rtcSetGeometryOccludedFilterFunction 107
7.54 rtcFilterIntersection . 108
7.55 rtcFilterOcclusion . 109
7.56 rtcSetGeometryUserData . 110
7.57 rtcGetGeometryUserData . 111
7.58 rtcSetGeometryUserPrimitiveCount 112
7.59 rtcSetGeometryBoundsFunction 113
7.60 rtcSetGeometryIntersectFunction 115
7.61 rtcSetGeometryOccludedFunction 117
7.62 rtcSetGeometryPointQueryFunction 119
7.63 rtcSetGeometryInstancedScene . 121
7.64 rtcSetGeometryTransform . 122
7.65 rtcSetGeometryTransformQuaternion 123
7.66 rtcGetGeometryTransform . 124

CONTENTS 4

7.67 rtcSetGeometryTessellationRate 125
7.68 rtcSetGeometryTopologyCount 126
7.69 rtcSetGeometrySubdivisionMode 127
7.70 rtcSetGeometryVertexAttributeTopology 128
7.71 rtcSetGeometryDisplacementFunction 129
7.72 rtcGetGeometryFirstHalfEdge . 131
7.73 rtcGetGeometryFace . 132
7.74 rtcGetGeometryNextHalfEdge . 133
7.75 rtcGetGeometryPreviousHalfEdge 134
7.76 rtcGetGeometryOppositeHalfEdge 135
7.77 rtcInterpolate . 136
7.78 rtcInterpolateN . 138
7.79 rtcNewBuffer . 139
7.80 rtcNewSharedBuffer . 140
7.81 rtcRetainBuffer . 141
7.82 rtcReleaseBuffer . 142
7.83 rtcGetBufferData . 143
7.84 RTCRay . 144
7.85 RTCHit . 145
7.86 RTCRayHit . 146
7.87 RTCRayN . 147
7.88 RTCHitN . 148
7.89 RTCRayHitN . 149
7.90 rtcInitIntersectContext . 150
7.91 rtcIntersect1 . 152
7.92 rtcOccluded1 . 154
7.93 rtcIntersect4/8/16 . 155
7.94 rtcOccluded4/8/16 . 157
7.95 rtcIntersect1M . 159
7.96 rtcOccluded1M . 160
7.97 rtcIntersect1Mp . 161
7.98 rtcOccluded1Mp . 162
7.99 rtcIntersectNM . 163
7.100 rtcOccludedNM . 164
7.101 rtcIntersectNp . 165
7.102 rtcOccludedNp . 166
7.103 rtcInitPointQueryContext . 167
7.104 rtcPointQuery . 168
7.105 rtcCollide . 170
7.106 rtcNewBVH . 171
7.107 rtcRetainBVH . 172
7.108 rtcReleaseBVH . 173
7.109 rtcBuildBVH . 174
7.110 RTCQuaternionDecomposition . 178
7.111 rtcInitQuaternionDecomposition 179

8 Performance Recommendations 180
8.1 MXCSR control and status register 180
8.2 Thread Creation and Affinity Settings 180
8.3 Fast Coherent Rays . 181
8.4 Huge Page Support . 181
8.5 Avoid store-to-load forwarding issues with single rays 182

CONTENTS 5

9 Embree Tutorials 183
9.1 Minimal . 184
9.2 Triangle Geometry . 184
9.3 Dynamic Scene . 185
9.4 Multi Scene Geometry . 186
9.5 User Geometry . 187
9.6 Viewer . 188
9.7 Stream Viewer . 189
9.8 Intersection Filter . 190
9.9 Instanced Geometry . 191
9.10 Multi Level Instancing . 191
9.11 Path Tracer . 192
9.12 Hair . 193
9.13 Curve Geometry . 194
9.14 Subdivision Geometry . 195
9.15 Displacement Geometry . 195
9.16 Grid Geometry . 196
9.17 Point Geometry . 197
9.18 Motion Blur Geometry . 198
9.19 Quaternion Motion Blur . 199
9.20 Interpolation . 200
9.21 Closest Point . 201
9.22 Voronoi . 202
9.23 Collision Detection . 203
9.24 BVH Builder . 203
9.25 BVH Access . 203
9.26 Find Embree . 204
9.27 Next Hit . 204

6

Chapter 1

EmbreeOverview

Intel® Embree is a collection of high-performance ray tracing kernels, developed
at Intel. The target users of Intel® Embree are graphics application engineerswho
want to improve the performance of their photo-realistic rendering application
by leveraging Embree’s performance-optimized ray tracing kernels. The kernels
are optimized for the latest Intel® processors with support for SSE, AVX, AVX2,
and AVX-512 instructions. Intel® Embree supports runtime code selection to
choose the traversal and build algorithms that best matches the instruction set
of your CPU. We recommend using Intel® Embree through its API to get the
highest benefit from future improvements. Intel® Embree is released as Open
Source under the Apache 2.0 license.

Intel® Embree supports applications written with the Intel® SPMD Program
Compiler (ISPC, https://ispc.github.io/) by also providing an ISPC inter-
face to the core ray tracing algorithms. This makes it possible to write a renderer
in ISPC that automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-
512 instructions. ISPC also supports runtime code selection, thus ISPC will select
the best code path for your application.

Intel® Embree contains algorithms optimized for incoherent workloads (e.g.
Monte Carlo ray tracing algorithms) and coherent workloads (e.g. primary visi-
bility and hard shadow rays).

The single-ray traversal kernels of Intel® Embree provide high performance
for incoherent workloads and are very easy to integrate into existing rendering
applications. Using the stream kernels, even higher performance for incoherent
rays is possible, but integration might require significant code changes to the
application to use the stream paradigm. In general for coherent workloads, the
stream mode with coherent flag set gives the best performance.

Intel® Embree also supports dynamic scenes by implementing high-performance
two-level spatial index structure construction algorithms.

In addition to the ray tracing kernels, Intel® Embree provides some Embree
Tutorials to demonstrate how to use the Embree API.

1.1 Supported Platforms

Embree supports Windows (32-bit and 64-bit), Linux (64-bit), and macOS (64-bit)
both x86 and Apple M1 based. The code compiles with the Intel® Compiler, GCC,
Clang, and the Microsoft Compiler.

Using the Intel® Compiler improves performance by approximately 10%. Per-
formance also varies across different operating systems, with Linux typically per-
forming best as it supports transparently transitioning to 2MB pages.

Embree is optimized for Intel CPUs supporting SSE, AVX, AVX2, and AVX-
512 instructions. Embree requires at least an x86 CPU with support for SSE2 or
an Apple M1 CPU. Embree Support and Contact ————————–

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/

Embree Overview 7

If you encounter bugs please report them via Embree’s GitHub Issue Tracker.
For questions and feature requests please write us at embree_support@

intel.com.
To receive notifications of updates and new features of Embree please sub-

scribe to the Embree mailing list.

1.2 VersionHistory

1.2.1 Embree 3.13.2
• Avoiding spatial split positions that are slightly out of geometry bounds.
• Introduced rtcGetGeometryThreadSafe function, which is a thread safe
version of rtcGetGeometry.

• Using more accurate rcp implementation.
• Bugfix to rare corner case of high quality BVH builder.

1.2.2 Embree 3.13.1
• Added support for ISPC+ARM.
• Releases upgrade to TBB 2021.3.0 and ISPC 1.16.1

1.2.3 Embree 3.13.0
• Added support for Apple M1 CPUs.
• RTC_SUBDIVISION_MODE_NO_BOUNDARY now works properly for
non-manifold edges.

• CMake target ‘uninstall’ is not defined if it already exists.
• Embree no longer reads the .embree3 config files, thus all configuration
has to get passed through the config string to rtcNewDevice.

• Releases upgrade to TBB 2021.2.0 and ISPC 1.15.0
• TBB dll is automatically copied into build folder after build on windows.

1.2.4 Embree 3.12.2
• Fixed wrong uv and Ng for grid intersector in robust mode for AVX.
• Removed optimizations for Knights Landing.
• Upgrading release builds to use oneTBB 2021.1.1

1.2.5 Embree 3.12.1
• Changed default frequency level to SIMD128 for Skylake, Cannon Lake,
Comet Lake and Tiger Lake CPUs. This change typically improves perfor-
mance for renderers that just use SSE by maintaining higher CPU frequen-
cies. In case your renderer is AVX optimized you can get higher ray tracing
performance by configuring the frequency level to simd256 through pass-
ing frequency_level=simd256 to rtcNewDevice.

1.2.6 Embree 3.12.0
• Added linear cone curve geometry support. In this mode a real geometric
surface for curves with linear basis is rendered using capped cones. They
are discontinuous at edge boundaries.

• Enabled fast two level builder for instances when low quality build is re-
quested.

• Bugfix for BVH build when geometries got disabled.

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/

Embree Overview 8

• Added EMBREE_BACKFACE_CULLING_CURVES cmake option. This al-
lows for a cheaper round linear curve intersection when correct internal
tracking and back hits are not required. The new cmake option defaults to
OFF.

• User geometries with invalid bounds with lower>upper in some dimension
will be ignored.

• Increased robustness for grid interpolation code and fixed returned out of
range u/v coordinates for grid primitive.

• Fixed handling of motion blur time range for sphere, discs, and oriented
disc geometries.

• Fixed missing model data in releases.
• Ensure compatibility to newer versions of oneTBB.
• Motion blur BVH nodes no longer store NaN values.

1.2.7 Embree 3.11.0
• Round linear curves now automatically check for the existence of left and
right connected segments if the flags buffer is empty. Left segments exist
if the segment(id-1) + 1 == segment(id) and similarly for right segments.

• Implemented the min-width feature for curves and points, which allows
to increase the radius in a distance dependent way, such that the curve or
points thickness is n pixels wide.

• Round linear curves are closed now also at their start.
• Embree no longer supports Visual Studio 2013 starting with this release.
• Bugfix in subdivision tessellation level assignment for non-quad base prim-
itives

• Small meshes are directly added to top level build phase of two-level
builder to reduce memory consumption.

• Enabled fast two level builder for user geometries when low quality build
is requested.

1.2.8 Embree 3.10.0

• Added EMBREE_COMPACT_POLYS CMake option which enables double
indexed triangle and quad leaves to reduce memory consumption in com-
pact mode by an additional 40% at about 15% performance impact. This
new mode is disabled by default.

• Compile fix for oneTBB 2021.1-beta05
• Releases upgrade to TBB 2020.2
• Compile fix for ISPC v1.13.0
• Adding RPATH to libembree.so in releases
• Increased required CMake version to 3.1.0
• Made instIDmember for array of pointers ray stream layout optional again.

1.2.9 Embree 3.9.0
• Added round linear curve geometry support. In this mode a real geometric
surface for curves with linear basis is rendered using capped cones with
spherical filling between the curve segments.

• Added rtcGetSceneDevice API function, that returns the device a scene got
created in.

• Improved performance of round curve rendering by up to 1.8x.
• Bugfix to sphere intersection filter invokation for back hit.
• Fixed wrong assertion that triggered for invalid curves which anyway get
filtered out.

• RelWithDebInfo mode no longer enables assertions.

Embree Overview 9

• Fixed an issue in FindTBB.cmake that caused compile error with Debug
build under Linux.

• Embree releases no longer provide RPMs for Linux. Please use the RPMs
coming with the package manager of your Linux distribution.

1.2.10 Embree 3.8.0
• Added collision detection support for user geometries (see rtcCollide API
function)

• Passing geomID to user geometry callbacks.
• Bugfix in AVX512VL codepath for rtcIntersect1
• For sphere geometries the intersection filter gets now invoked for front
and back hit.

• Fixed some bugs for quaternion motion blur.
• RTCIntersectContext always non-const in Embree API
• Made RTCHit aligned to 16 bytes in Embree API

1.2.11 NewFeatures in Embree 3.7.0
• Added quaternion motion blur for correct interpolation of rotational trans-
formations.

• Fixed wrong bounding calculations when a motion blurred instance did
instantiate a motion blurred scene.

• In robust mode the depth test consistently uses tnear <= t <= tfar now in
order to robustly continue traversal at a previous hit point in a way that
guarentees reaching all hits, even hits at the same place.

• Fixed depth test in robust mode to be precise at tnear and tfar.
• Added next_hit tutorial to demonstrate robustly collecting all hits along a
ray using multiple ray queries.

• Implemented robust mode for curves. This has a small performance impact
but fixes bounding problems with flat curves.

• Improved quality of motion blur BVH by using linear bounds during bin-
ning.

• Implemented issue with motion blur builder where number of time seg-
ments for SAH heuristic were counted wrong due to some numerical is-
sues.

• Fixed an accuracy issue with rendering very short fat curves.
• rtcCommitScene can nowget called during rendering frommultiple threads
to lazily build geometry. When TBB is used this causes a much lower over-
head than using rtcJoinCommitScene.

• Geometries can now get attached to multiple scenes at the same time,
which simplifies mapping general scene graphs to API.

• Updated to TBB 2019.9 for release builds.
• Fixed a bug in the BVH builder for Grid geometries.
• Added macOS Catalina support to Embree releases.

1.2.12 NewFeatures in Embree 3.6.1
• Restored binary compatibility between Embree 3.6 and 3.5 when single-
level instancing is used.

• Fixed bug in subgrid intersector
• Removed point query alignment in ISPC header

1.2.13 NewFeatures in Embree 3.6
• Added Catmull-Rom curve types.
• Added support for multi-level instancing.

Embree Overview 10

• Added support for point queries.
• Fixed a bug preventing normal oriented curves being used unless timesteps
were specified.

• Fixed bug in external BVH builder when configured for dynamic build.
• Added support for new config flag “user_threads=N” to device initializa-
tion which sets the number of threads used by TBB but created by the user.

• Fixed automatic vertex buffer padding when using rtcSetNewGeometry
API function.

1.2.14 NewFeatures in Embree 3.5.2
• Added EMBREE_API_NAMESPACE cmake option that allows to put all
Embree API functions inside a user defined namespace.

• Added EMBREE_LIBRARY_NAME cmake option that allows to rename the
Embree library.

• When Embree is compiled as static library, EMBREE_STATIC_LIB has no
longer to get defined before including the Embree API headers.

• Added CPU frequency_level device configuration to allow an application
to specify the frequency level it wants to run on. This forces Embree to not
use optimizations that may reduce the CPU frequency below that level. By
default Embree is configured to the the AVX-heavy frequency level, thus if
the application uses solely non-AVX code, configuring the Embree device
with “frequency_level=simd128” may give better performance.

• Fixed a bug in the spatial split builder which caused it to fail for scenes
with more than 2^24 geometries.

1.2.15 NewFeatures in Embree 3.5.1

• Fixed ray/sphere intersector to work also for non-normalized rays.
• Fixed self intersection avoidance for ray oriented discswhen non-normalized
rays were used.

• Increased maximal face valence for subdiv patch to 64 and reduced stack
size requirement for subdiv patch evaluation.

1.2.16 NewFeatures in Embree 3.5.0
• Changed normal oriented curve definition to fix waving artefacts.
• Fixed bounding issue for normal oriented motion blurred curves.
• Fixed performance issue with motion blurred point geometry.
• Fixed generation of documentation with new pandoc versions.

1.2.17 NewFeatures in Embree 3.4.0
• Added point primitives (spheres, ray-oriented discs, normal-oriented discs).
• Fixed crash triggered by scenes with only invalid primitives.
• Improved robustness of quad/grid-based intersectors.
• Upgraded to TBB 2019.2 for release builds.

1.2.18 NewFeatures in Embree 3.3.0
• Added support for motion blur time range per geometry. This way geome-
tries can appear and disappear during the camera shutter and time steps
do not have to start and end at camera shutter interval boundaries.

• Fixed crash with pathtracer when using –triangle-sphere command line.
• Fixed crash with pathtracer when using –shader ao command line.
• Fixed tutorials showing a black window on macOS 10.14 until moved.

Embree Overview 11

1.2.19 NewFeatures in Embree 3.2.4
• Fixed compile issues with ICC 2019.
• Released ZIP files for Windows are now provided in a version linked
against Visual Studio 2013 and Visual Studio 2015.

1.2.20 NewFeatures in Embree 3.2.3
• Fixed crash when using curves with RTC_SCENE_FLAG_DYNAMIC com-
bined with RTC_BUILD_QUALITY_MEDIUM.

1.2.21 NewFeatures in Embree 3.2.2
• Fixed intersection distance for unnormalized rays with line segments.
• Removed libmmd.dll dependency in release builds for Windows.
• Fixed detection of AppleClang compiler under MacOSX.

1.2.22 NewFeatures in Embree 3.2.1
• Bugfix in flat mode for hermite curves.
• Added EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR
cmake option to control self intersection avoidance for flat curves.

• Performance fix when instantiating motion blurred scenes. The applica-
tion should best use two (or more) time steps for an instance that instanti-
ates a motion blurred scene.

• Fixed AVX512 compile issue with GCC 6.1.1.
• Fixed performance issue with rtcGetGeometryUserData when used during
rendering.

• Bugfix in length of derivatives for grid geometry.
• Added BVH8 support for motion blurred curves and lines. For some work-
loads this increases performance by up to 7%.

• Fixed rtcGetGeometryTransform to return the local to world transform.
• Fixed bug in multi segment motion blur that caused missing of perfectly
axis aligned geometry.

• Reduced memory consumption of small scenes by 4x.
• Reduced temporal storage of grid builder.

1.2.23 NewFeatures in Embree 3.2.0
• Improved watertightness of robust mode.
• Line segments, and other curves are now all contained in a single BVH
which improves performance when these are both used in a scene.

• Performance improvement of up to 20% for line segments.
• Bugfix to Embree2 to Embree3 conversion script.
• Added support for Hermite curve basis.
• Semantics of normal buffer for normal oriented curves has changed to sim-
plify usage. Please see documentation for details.

• Using GLFW and imgui in tutorials.
• Fixed floating point exception in static variable initialization.
• Fixed invalidmemory access in rtcGetGeometryTransform for non-motion
blur instances.

• Improved self intersection avoidance for flat curves. Transparency rays
with tnear set to previous hit distance do not need curve radius based self
intersection avoidance as same hit is calculated again. For this reason self
intersection avoidance is now only applied to ray origin.

Embree Overview 12

1.2.24 NewFeatures in Embree 3.1.0
• Added new normal-oriented curve primitive for ray tracing of grass-like
structures.

• Added new grid primitive for ray tracing tessellated and displaced surfaces
in very memory efficient manner.

• Fixed bug of ribbon curve intersector when derivative was zero.
• Installing all static libraries when EMBREE_STATIC_LIB is enabled.
• Added API functions to access topology of subdivision mesh.
• Reduced memory consumption of instances.
• Improved performance of instances by 8%.
• Reduced memory consumption of curves by up to 2x.
• Up to 5% higher performance on AVX-512 architectures.
• Added native support formultiple curve basis functions. Internal basis con-
versions are no longer performed, which saves additional memory when
multiple bases are used.

• Fixed issuewith non thread safe local static variable initialization in VS2013.
• Bugfix in rtcSetNewGeometry. Vertex buffers did not get properly overal-
located.

• Replaced ImageMagick with OpenImageIO in the tutorials.

1.2.25 NewFeatures in Embree 3.0.0
• Switched to a new version of the API which provides improved flexibility
but is not backward compatible. Please see “Upgrading from Embree 2
to Embree 3” section of the documentation for upgrade instructions. In
particular, we provide a Python script that performs most of the transition
work.

• User geometries inside an instanced scene and a top-level scene no longer
need to handle the instID field of the ray differently. They both just need
to copy the context.instID into the ray.instID field.

• Support for context filter functions that can be assigned to a ray query.
• User geometries can now invoke filter functions using the rtcFilterInter-
section and rtcFilterOcclusion calls.

• Higher flexibility through specifying build quality per scene and geometry.
• Geometry normal uses commonly used right-hand rule from now on.
• Added self-intersection avoidance to ribbon curves and lines. Applications
do not have to implement self-intersection workarounds for these primi-
tive types anymore.

• Added support for 4 billion primitives in a single scene.
• Removed the RTC_MAX_USER_VERTEX_BUFFERS and RTC_MAX_INDEX_BUFFERS
limitations.

• Reduced memory consumption by 192 bytes per instance.
• Fixed some performance issues on AVX-512 architectures.
• Individual Contributor License Agreement (ICLA) and Corporate Contrib-
utor License Agreement (CCLA) no longer required to contribute to the
project.

1.2.26 NewFeatures in Embree 2.17.5
• Improved watertightness of robust mode.
• Fixed floating point exception in static variable initialization.
• Fixed AVX512 compile issue with GCC 6.1.1.

1.2.27 NewFeatures in Embree 2.17.4
• Fixed AVX512 compile issue with GCC 7.

Embree Overview 13

• Fixed issuewith not thread safe local static variable initialization in VS2013.
• Fixed bug in the 4 and 8-wide packet intersection of instances with multi-
segment motion blur on AVX-512 architectures.

• Fixed bug in rtcOccluded4/8/16 when only AVX-512 ISA was enabled.

1.2.28 NewFeatures in Embree 2.17.3
• Fixed GCC compile warning in debug mode.
• Fixed bug of ribbon curve intersector when derivative was zero.
• Installing all static libraries when EMBREE_STATIC_LIB is enabled.

1.2.29 NewFeatures in Embree 2.17.2
• Made BVH build of curve geometry deterministic.

1.2.30 NewFeatures in Embree 2.17.1
• Improved performance of occlusion ray packets by up to 50%.
• Fixed detection of Clang for CMake 3 under MacOSX
• Fixed AVX code compilation issue with GCC 7 compiler caused by explicit
use of vzeroupper intrinsics.

• Fixed an issue where Clang address sanitizer reported an error in the in-
ternal tasking system.

• Added fix to compile on 32 bit Linux distribution.
• Fixed some wrong relative include paths in Embree.
• Improved performance of robust single ray mode by 5%.
• Added EMBREE_INSTALL_DEPENDENCIES option (default OFF) to en-
able installing of Embree dependencies.

• Fixed performance regression for occlusion ray streams.
• Reduced temporary memory requirements of BVH builder for curves and
line segments.

• Fixed performance regression for user geometries and packet ray tracing.
• Fixed bug where wrong closest hit was reported for very curvy hair seg-
ment.

1.2.31 NewFeatures in Embree 2.17.0

• Improved packet ray tracing performance for coherent rays by 10-60% (re-
quires RTC_INTERSECT_COHERENT flag).

• Improved ray tracing performance for incoherent rays on AVX-512 archi-
tectures by 5%.

• Improved ray tracing performance for streams of incoherent rays by 5-15%.
• Fixed tbb_debug.lib linking error under Windows.
• Fast coherent ray stream and packet code paths now also work in robust
mode.

• Using less agressive prefetching for large BVH nodes which results in 1-2%
higher ray tracing performance.

• Precompiled binaries have stack-protector enabled, except for traversal
kernels. BVH builders can be slightly slower due to this change. If you
want stack-protectors disabled please turn off EMBREE_STACK_PROTECTOR
in cmake and build the binaries yourself.

• When enabling ISAs individually, the 8-wide BVH was previously only
available when the AVX ISA was also selected. This issue is now fixed,
and one can enable only AVX2 and still get best performance by using an
8-wide BVH.

• Fixed rtcOccluded1 and rtcOccluded1Ex API functions which were broken
in ISPC.

Embree Overview 14

• Providing MSI installer for Windows.

1.2.32 NewFeatures in Embree 2.16.5
• Bugfix in the robust triangle intersector that rarely caused NaNs.
• Fixed bug in hybrid traversal kernel when BVH leaf was entered with no
active rays. This rarely caused crashes when used with instancing.

• Fixed bug introduced in Embree 2.16.2 which caused instancing not to
work properly when a smaller than the native SIMD width was used in
ray packet mode.

• Fixed bug in the curve geometry intersector that caused rendering artefacts
for Bézier curves with p0=p1 and/or p2=p3.

• Fixed bug in the curve geometry intersector that caused hit results with
NaNs to be reported.

• Fixed masking bug that caused rare cracks in curve geometry.
• Enabled support for SSE2 in precompiled binaries again.

1.2.33 NewFeatures in Embree 2.16.4
• Bugfix in the ribbon intersector for hair primitives. Non-normalized rays
caused wrong intersection distance to be reported.

1.2.34 NewFeatures in Embree 2.16.3
• Increased accuracy for handling subdivision surfaces. This fixes cracks
when using displacement mapping but reduces performance at irregular
vertices.

• Fixed a bug where subdivision geometry was not properly updated when
modifying only the tesselation rate and vertex array.

1.2.35 NewFeatures in Embree 2.16.2
• Fixed bug that caused NULL intersection context in intersection filter
when instancing was used.

• Fixed an issue where uv’s where outside the triangle (or quad) for very
small triangles (or quads). In robust mode we improved the uv calculation
to avoid that issue, in fast mode we accept that inconsistency for better
performance.

• Changed UV encoding for non-quad subdivision patches to allow a sub-
patch UV range of [-0.5,1.5[. Using this new encoding one can use
finite differences to calculate derivatives if required. Please adjust your
code in case you rely on the old encoding.

1.2.36 NewFeatures in Embree 2.16.1
• Workaround for compile issues with Visual Studio 2017
• Fixed bug in subdiv code for static scenes when using tessellation levels
larger than 50.

• Fixed low performance when adding many geometries to a scene.
• Fixed high memory consumption issue when using instances in dynamic
scene (by disabling two level builder for user geometries and instances).

1.2.37 NewFeatures in Embree 2.16.0
• Improved multi-segment motion blur support for scenes with different
number of time steps per mesh.

Embree Overview 15

• New top level BVH builder that improves build times and BVH quality of
two-level BVHs.

• Added support to enable only a single ISA. Previously code was always
compiled for SSE2.

• Improved single ray tracing performance for incoherent rays on AVX-512
architectures by 5-10%.

• Improved packet/hybrid ray tracing performance for incoherent rays on
AVX-512 architectures by 10-30%.

• Improved stream ray tracing performance for coherent rays in structure-
of-pointers layout by 40-70%.

• BVH builder for compact scenes of triangles and quads needs essentially
no temporary memory anymore. This doubles the maximal scene size that
can be rendered in compact mode.

• Triangles no longer store the geometry normal in fast/default mode which
reduces memory consumption by up to 20%.

• Compact mode uses BVH4 now consistently which reduces memory con-
sumption by up to 10%.

• Reduced memory consumption for small scenes (of 10k-100k primitives)
and dynamic scenes.

• Improved performance of user geometries and instances through BVH8
support.

• The API supports now specifying the geometry ID of a geometry at con-
struction time. This way matching the geometry ID used by Embree and
the application is simplified.

• Fixed a bug that would have caused a failure of the BVH builder for dy-
namic scenes when run on a machine with more then 1000 threads.

• Fixed a bug that could have been triggered when reaching the maximal
number of mappings under Linux (vm.max_map_count). This could have
happened when creating a large number of small static scenes.

• Added huge page support for Windows and MacOSX (experimental).
• Added support for Visual Studio 2017.
• Removed support for Visual Studio 2012.
• Precompiled binaries now require a CPU supporting at least the SSE4.2
ISA.

• We no longer provide precompiled binaries for 32-bit on Windows.
• Under Windows one now has to use the platform toolset option in CMake
to switch to Clang or the Intel® Compiler.

• Fixed a bug for subdivision meshes when using the incoherent scene flag.
• Fixed a bug in the line geometry intersection, that caused reporting an
invalid line segment intersection with primID -1.

• Buffer stride for vertex buffers of different time steps of triangle and quad
meshes have to be identical now.

• Fixed a bug in the curve geometry intersection code when passed a perfect
cylinder.

1.2.38 NewFeatures in Embree 2.15.0
• Added rtcCommitJoin mode that allows thread to join a build operation.
When using the internal tasking system this allows Embree to solely use
the threads that called rtcCommitJoin to build the scene, while previously
also normal worker threads participated in the build. You should no longer
use rtcCommit to join a build.

• Added rtcDeviceSetErrorFunction2 API call, which sets an error call-
back function which additionally gets passed a user provided pointer
(rtcDeviceSetErrorFunction is now deprecated).

• Added rtcDeviceSetMemoryMonitorFunction2 API call, which sets a

Embree Overview 16

memory monitor callback function which additionally get passed a user
provided pointer. (rtcDeviceSetMemoryMonitorFunction is now depre-
cated).

• Build performance for hair geometry improved by up to 2×.
• Standard BVH build performance increased by 5%.
• Added API extension to use internal Morton-code based builder, the stan-
dard binned-SAH builder, and the spatial split-based SAH builder.

• Added support for BSpline hair and curves. Embree uses either the Bézier
or BSpline basis internally, and converts other curves, which requires more
memory during rendering. For reduced memory consumption set the EM-
BREE_NATIVE_SPLINE_BASIS to the basis your application uses (which is
set to BEZIER by default).

• Setting the number of threads through tbb::taskscheduler_init object
on the application side is now working properly.

• Windows and Linux releases are build using AVX-512 support.
• Implemented hybrid traversal for hair and line segments for improved ray
packet performance.

• AVX-512 code compiles with Clang 4.0.0
• Fixed crash when ray packets were disabled in CMake.

1.2.39 NewFeatures in Embree 2.14.0
• Added ignore_config_files option to init flags that allows the applica-
tion to ignore Embree configuration files.

• Face-varying interpolation is now supported for subdivision surfaces.
• Up to 16 user vertex buffers are supported for vertex attribute interpola-
tion.

• Deprecated rtcSetBoundaryMode function, please use the new rtcSet-
SubdivisionMode function.

• Added RTC_SUBDIV_PIN_BOUNDARY mode for handling boundaries of sub-
division meshes.

• Added RTC_SUBDIV_PIN_ALLmode to enforce linear interpolation for sub-
division meshes.

• Optimized object generation performance for dynamic scenes.
• Reduced memory consumption when using lots of small dynamic objects.
• Fixed bug for subdivision surfaces using low tessellation rates.
• Hair geometry now uses a new ribbon intersector that intersects with ray-
facing quads. The new intersector also returns the v-coordinate of the hair
intersection, and fixes artefacts at junction points between segments, at the
cost of a small performance hit.

• Added rtcSetBuffer2 function, that additionally gets the number of el-
ements of a buffer. In dynamic scenes, this function allows to quickly
change buffer sizes, making it possible to change the number of primitives
of a mesh or the number of crease features for subdivision surfaces.

• Added simple ‘viewer_anim’ tutorial for rendering key frame animations
and ‘buildbench’ for measuring BVH (re-)build performance for static and
dynamic scenes.

• Added more AVX-512 optimizations for future architectures.

1.2.40 NewFeatures in Embree 2.13.0
• Improved performance for compact (but not robust) scenes.
• Added robust mode for motion blurred triangles and quads.
• Added fast dynamic mode for user geometries.
• Up to 20% faster BVH build performance on the second generation Intel®
Xeon Phi™ processor codenamed Knights Landing.

Embree Overview 17

• Improved quality of the spatial split builder.
• Improved performance for coherent streams of ray packets (SOA layout),
e.g. for fast primary visibility.

• Various bug fixes in tessellation cache, quad-based spatial split builder, etc.

1.2.41 NewFeatures in Embree 2.12.0
• Added support for multi-segment motion blur for all primitive types.
• API support for stream of pointers to single rays (rtcIntersect1Mp and
rtcOccluded1Mp)

• Improved BVH refitting performance for dynamic scenes.
• Improved high-quality mode for quads (added spatial split builder for
quads)

• Faster dynamic scenes for triangle and quad-based meshes on AVX2 en-
abled machines.

• Performance and correctness bugfix in optimization for streams of coher-
ent (single) rays.

• Fixed large memory consumption (issue introduced in Embree v2.11.0). If
you use Embree v2.11.0 please upgrade to Embree v2.12.0.

• Reducedmemory consumption for dynamic scenes containing smallmeshes.
• Added support to start and affinitize TBB worker threads by passing
“start_threads=1,set_affinity=1” to rtcNewDevice. These settings
are recommended on systems with a high thread count.

• rtcInterpolate2 can now be called within a displacement shader.
• Added initial support for Microsoft’s Parallel Pattern Library (PPL) as
tasking system alternative (for optimal performance TBB is highly rec-
ommended).

• Updated to TBB 2017 which is released under the Apache v2.0 license.
• Dropped support for Visual Studio 2012 Win32 compiler. Visual Studio
2012 x64 is still supported.

1.2.42 NewFeatures in Embree 2.11.0

• Improved performance for streams of coherent (single) rays flagged with
RTC_INTERSECT_COHERENT. For such coherent ray streams, e.g. primary
rays, the performance typically improves by 1.3-2×.

• New spatial split BVH builder for triangles, which is 2-6× faster than the
previous version and more memory conservative.

• Improved performance and scalability of all standard BVH builders on sys-
tems with large core counts.

• Fixed rtcGetBounds for motion blur scenes.
• Thread affinity is now on by default when running on the latest Intel®
Xeon Phi™ processor.

• Added AVX-512 support for future Intel® Xeon processors.

1.2.43 NewFeatures in Embree 2.10.0
• Added a new curve geometry which renders the sweep surface of a circle
along a Bézier curve.

• Intersection filters can update the tfar ray distance.
• Geometry types can get disabled at compile time.
• Modified and extended the ray stream API.
• Added new callback mechanism for the ray stream API.
• Improved ray stream performance (up to 5-10%).
• Up to 20% faster morton builder on machines with large core counts.
• Lots of optimizations for the second generation Intel® Xeon Phi™ proces-
sor codenamed Knights Landing.

Embree Overview 18

• Added experimental support for compressed BVHnodes (reduces node size
to 56-62% of uncompressed size). Compression introduces a typical perfor-
mance overhead of ~10%.

• Bugfix in backface culling mode. We do now properly cull the backfaces
and not the frontfaces.

• Feature freeze for the first generation Intel® Xeon Phi™ coprocessor code-
named Knights Corner. We will still maintain and add bug fixes to Embree
v2.9.0, but Embree 2.10 and future versions will no longer support it.

1.2.44 NewFeatures in Embree 2.9.0
• Improved shadow ray performance (10-100% depending on the scene).
• Added initial support for ray streams (10-30% higher performance depend-
ing on ray coherence in the stream).

• Added support to calculate second order derivatives using the rtcInter-
polate2 function.

• Changed the parametrization for triangular subdivision faces to the same
scheme used for pentagons.

• Added support to query the Embree configuration using the rtcDeviceGet-
Parameter function.

1.2.45 NewFeatures in Embree 2.8.1

• Added support for setting per geometry tessellation rate (supported for
subdivision and Bézier geometries).

• Added support for motion blurred instances.

1.2.46 NewFeatures in Embree 2.8.0
• Added support for line segment geometry.
• Added support for quad geometry (replaces triangle-pairs feature).
• Added support for linear motion blur of user geometries.
• Improved performance through AVX-512 optimizations.
• Improved performance of lazy scene build (when using TBB 4.4 update 2).
• Improved performance through huge page support under linux.

1.2.47 NewFeatures in Embree 2.7.1

• Internal tasking system supports cancellation of build operations.
• ISPC mode for robust and compact scenes got significantly faster (imple-
mented hybrid traversal for bvh4.triangle4v and bvh4.triangle4i).

• Hair rendering got faster as we fixed some issues with the SAH heuristic
cost factors.

• BVH8 got slight faster for single ray traversal (improved sorting when hit-
ting more than 4 boxes).

• BVH build performance got up to 30% faster on CPUswith high core counts
(improved parallel partition code).

• High quality build mode again working properly (spatial splits had been
deactivated in v2.7.0 due to some bug).

• Support for merging two adjacent triangles sharing a common edge into a
triangle-pair primitive (can reduce memory consumption and BVH build
times by up to 50% for mostly quad-based input meshes).

• Internal cleanups (reduced number of traversal kernels by more templat-
ing).

• Reduced stack size requirements of BVH builders.
• Fixed crash for dynamic scenes, triggered by deleting all geometries from
the scene.

Embree Overview 19

1.2.48 NewFeatures in Embree 2.7.0
• Added device concept to Embree to allow different components of an ap-
plication to use Embree without interfering with each other.

• Fixed memory leak in twolevel builder used for dynamic scenes.
• Fixed bug in tesselation cache that caused crashes for subdivision surfaces.
• Fixed bug in internal task scheduler that caused deadlocks when using
rtcCommitThread.

• Improved hit-distance accuracy for thin triangles in robust mode.
• Added support to disable ray packet support in cmake.

1.2.49 NewFeatures in Embree 2.6.2
• Fixed bug triggered by instantiating motion blur geometry.
• Fixed bug in hit UV coordinates of static subdivision geometries.
• Performance improvements when only changing tessellation levels for sub-
division geometry per frame.

• Added ray packet intersectors for subdivision geometry, resulting in im-
proved performance for coherent rays.

• Reduced virtual address space usage for static geometries.
• Fixed some AVX2 code paths when compiling with GCC or Clang.
• Bugfix for subdiv patches with non-matching winding order.
• Bugfix in ISA detection of AVX-512.

1.2.50 NewFeatures in Embree 2.6.1

• Major performance improvements for ray tracing subdivision surfaces,
e.g. up to 2× faster for scenes where only the tessellation levels are chang-
ing per frame, and up to 3× faster for scenes with lots of crease features

• Initial support for architectures supporting the new 16-wide AVX-512 ISA
• Implemented intersection filter callback support for subdivision surfaces
• Added RTC_IGNORE_INVALID_RAYS CMake option which makes the ray
intersectors more robust against full tree traversal caused by invalid ray
inputs (e.g. INF, NaN, etc)

1.2.51 NewFeatures in Embree 2.6.0
• Added rtcInterpolate function to interpolate per vertex attributes
• Added rtcSetBoundaryMode function that can be used to select the bound-
ary handling for subdivision surfaces

• Fixed a traversal bug that caused rays with very small ray direction com-
ponents to miss geometry

• Performance improvements for the robust traversal mode
• Fixed deadlock when calling rtcCommit from multiple threads on same
scene

1.2.52 NewFeatures in Embree 2.5.1
• On dual socket workstations, the initial BVH build performance almost
doubled through a better memory allocation scheme

• Reduced memory usage for subdivision surface objects with crease fea-
tures

• rtcCommit performance is robust against unset “flush to zero” and “denor-
mals are zero” flags. However, enabling these flags in your application is
still recommended

• Reduced memory usage for subdivision surfaces with borders and in-
finitely sharp creases

Embree Overview 20

• Lots of internal cleanups and bug fixes for both Intel® Xeon® and Intel®
Xeon Phi™

1.2.53 NewFeatures in Embree 2.5.0
• Improved hierarchy build performance on both Intel Xeon and Intel Xeon
Phi

• Vastly improved tessellation cache for ray tracing subdivision surfaces
• Added rtcGetUserData API call to query per geometry user pointer set
through rtcSetUserData

• Added support for memory monitor callback functions to track and limit
memory consumption

• Added support for progress monitor callback functions to track build
progress and cancel long build operations

• BVH builders can be used to build user defined hierarchies inside the ap-
plication (see tutorial BVH Builder)

• Switched to TBB as default tasking system on Xeon to get even faster hi-
erarchy build times and better integration for applications that also use
TBB

• rtcCommit can get called from multiple TBB threads to join the hierarchy
build operations

1.2.54 NewFeatures in Embree 2.4
• Support for Catmull Clark subdivision surfaces (triangle/quad base primi-
tives)

• Support for vector displacements on Catmull Clark subdivision surfaces
• Various bug fixes (e.g. 4-byte alignment of vertex buffers works)

1.2.55 NewFeatures in Embree 2.3.3
• BVH builders more robustly handle invalid input data (Intel Xeon proces-
sor family)

• Motion blur support for hair geometry (Xeon)
• Improved motion blur performance for triangle geometry (Xeon)
• Improved robust ray tracing mode (Xeon)
• Added rtcCommitThread API call for easier integration into existing task-
ing systems (Xeon and Intel Xeon Phi coprocessor)

• Added support for recording and replaying all rtcIntersect/rtcOccluded
calls (Xeon and Xeon Phi)

1.2.56 NewFeatures in Embree 2.3.2
• Improved mixed AABB/OBB-BVH for hair geometry (Xeon Phi)
• Reduced amount of pre-allocated memory for BVH builders (Xeon Phi)
• New 64-bit Morton code-based BVH builder (Xeon Phi)
• (Enhanced) Morton code-based BVH builders use now tree rotations to
improve BVH quality (Xeon Phi)

• Bug fixes (Xeon and Xeon Phi)

1.2.57 NewFeatures in Embree 2.3.1
• High quality BVH mode improves spatial splits which result in up to 30%
performance improvement for some scenes (Xeon)

• Compile time enabled intersection filter functions do not reduce perfor-
mance if no intersection filter is used in the scene (Xeon and Xeon Phi)

Embree Overview 21

• Improved ray tracing performance for hair geometry by >20% on Xeon Phi.
BVH for hair geometry requires 20% less memory

• BVH8 for AVX/AVX2 targets improves performance for single ray tracing
on Haswell by up to 12% and by up to 5% for hybrid (Xeon)

• Memory conservative BVH for Xeon Phi now uses BVH node quantiza-
tion to lower memory footprint (requires half the memory footprint of the
default BVH)

1.2.58 NewFeatures in Embree 2.3
• Support for ray tracing hair geometry (Xeon and Xeon Phi)
• Catching errors through error callback function
• Faster hybrid traversal (Xeon and Xeon Phi)
• New memory conservative BVH for Xeon Phi
• Faster Morton code-based builder on Xeon
• Faster binned-SAH builder on Xeon Phi
• Lots of code cleanups/simplifications/improvements (Xeon and Xeon Phi)

1.2.59 NewFeatures in Embree 2.2

• Support for motion blur on Xeon Phi
• Support for intersection filter callback functions
• Support for buffer sharing with the application
• Lots of AVX2 optimizations, e.g. ~20% faster 8-wide hybrid traversal
• Experimental support for 8-wide (AVX/AVX2) and 16-wide BVHs (Xeon
Phi)

1.2.60 NewFeatures in Embree 2.1
• New future proof API with a strong focus on supporting dynamic scenes
• Lots of optimizations for 8-wide AVX2 (Haswell architecture)
• Automatic runtime code selection for SSE, AVX, and AVX2
• Support for user-defined geometry
• New and improved BVH builders:

– Fast adaptive Morton code-based builder (without SAH-based top-
level rebuild)

– Both the SAH and Morton code-based builders got faster (Xeon Phi)
– New variant of the SAH-based builder using triangle pre-splits (Xeon

Phi)

1.2.61 NewFeatures in Embree 2.0

• Support for the Intel® Xeon Phi™ coprocessor platform
• Support for high-performance “packet” kernels on SSE, AVX, and Xeon Phi
• Integration with the Intel® SPMD Program Compiler (ISPC)
• Instantiation and fast BVH reconstruction
• Example photo-realistic rendering engine for both C++ and ISPC

22

Chapter 2

Installation of Embree

2.1 WindowsMSI Installer

You can install the Embree library using the Windows MSI installer embree-
3.13.2-x64.vc14.msi. This will install the 64-bit Embree version by default in Pro-
gram Files\Intel\Embree3.

You have to set the path to the bin folders manually to your PATH environ-
ment variable for applications to find Embree.

To compile applications with Embree using CMake, please have a look at the
find_embree tutorial. To compile this tutorial, you need to set the embree_DIR
CMake variable of this tutorial to Program Files\Intel\Embree3.

To uninstall Embree, open Programs and Features by clicking the Start
button, clicking Control Panel, clicking Programs, and then clicking Pro-
grams and Features. Select Embree 3.13.2 x64 and uninstall it.

2.2 WindowsZIP File

Embree linked against Visual Studio 2015 are provided as a ZIP file embree-
3.13.2.x64.vc14.windows.zip. After unpacking this ZIP file, you should set the
path to the lib folder manually to your PATH environment variable for applica-
tions to find Embree. To compile applications with Embree, you also have to set
the Include Directories path in Visual Studio to the include folder of the
Embree installation.

If you plan to ship Embree with your application, best use the Embree version
from this ZIP file.

2.3 Linux tar.gz Files

The Linux version of Embree is also delivered as a tar.gz file: embree-3.13.2.x86_64.linux.tar.gz.
Unpack this file using tar and source the provided embree-vars.sh (if you are
using the bash shell) or embree-vars.csh (if you are using the C shell) to set up
the environment properly:

tar xzf embree-3.13.2.x86_64.linux.tar.gz
source embree-3.13.2.x86_64.linux/embree-vars.sh

If you want to ship Embree with your application, best use the Embree ver-
sion provided in the tar.gz file.

We recommend adding a relative RPATH to your application that points to the
location where Embree (and TBB) can be found, e.g. $ORIGIN/../lib.

https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x64.vc14.msi
https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x64.vc14.msi
https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x64.vc14.windows.zip
https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x64.vc14.windows.zip
https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x86_64.linux.tar.gz

Installation of Embree 23

2.4 macOSPKG Installer

To install the Embree library on your macOS system use the provided package
installer inside embree-3.13.2.x86_64.pkg. This will install Embree by default into
/opt/local/lib and /opt/local/include directories. The Embree tutorials
are installed into the /Applications/Embree3 directory.

You also have to install the Intel® Threading Building Blocks (TBB) using
MacPorts:

sudo port install tbb

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the DYLD_LIBRARY_PATH
environment variable to point to the TBB library.

To uninstall Embree, execute the uninstaller script /Applications/Em-
bree3/uninstall.command.

2.5 macOSZIP file

ThemacOS version of Embree is also delivered as a ZIP file: embree-3.13.2.x86_64.macosx.zip.
Unpack this file using tar and source the provided embree-vars.sh (if you are
using the bash shell) or embree-vars.csh (if you are using the C shell) to set up
the environment properly:

unzip embree-3.13.2.x64.macosx.zip
source embree-3.13.2.x64.macosx/embree-vars.sh

If you want to ship Embree with your application, please use the Embree
library of the provided ZIP file. The library name of that Embree library is of
the form @rpath/libembree.3.dylib (and similar also for the included TBB
library). This ensures that you can add a relative RPATH to your application that
points to the locationwhere Embree (and TBB) can be found, e.g. @loader_path/
../lib.

https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x86_64.pkg
http://www.macports.org/
https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download
https://github.com/embree/embree/releases/download/v3.13.2/embree-3.13.2.x86_64.macosx.zip

24

Chapter 3

Compiling Embree

We recommend to use CMake to build Embree. Do not enable fast-math opti-
mizations; these might break Embree.

3.1 Linux andmacOS

To compile Embree you need a modern C++ compiler that supports C++11. Em-
bree is tested with the following compilers:

Linux

• Intel® Compiler 2020 Update 1
• Intel® Compiler 2019 Update 4
• Intel® Compiler 2017 Update 1
• Intel® Compiler 2016 Update 3
• Intel® Compiler 2015 Update 3
• Clang 5.0.0
• Clang 4.0.0
• GCC 10.0.1 (Fedora 32) AVX512 support
• GCC 8.3.1 (Fedora 28) AVX512 support
• GCC 7.3.1 (Fedora 27) AVX2 support
• GCC 7.3.1 (Fedora 26) AVX2 support
• GCC 6.4.1 (Fedora 25) AVX2 support

macOS x86

• Intel® Compiler 2020 Update 1
• Intel® Compiler 2019 Update 4
• Apple LLVM 10.0.1 (macOS 10.14.6)

macOS M1

• Apple Clang 12.0.0

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend to use
Embree with the Intel® Threading Building Blocks (TBB) and best also use TBB
inside your application. Optionally you can disable TBB in Embree through the
EMBREE_TASKING_SYSTEM CMake variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straightforward parallelization of an entire renderer. If you do not want to
use ISPC then you can disable EMBREE_ISPC_SUPPORT in CMake. Otherwise,
download and install the ISPC binaries (we have tested ISPC version 1.9.1) from
ispc.github.io. After installation, put the path to ispc permanently into your

https://ispc.github.io/downloads.html

Compiling Embree 25

PATH environment variable or you need to correctly set the ISPC_EXECUTABLE
variable during CMake configuration.

You additionally have to install CMake 3.1.0 or higher and the developer ver-
sion of GLUT.

Under macOS, all these dependencies can be installed using MacPorts:

sudo port install cmake tbb-devel glfw-devel

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel
sudo yum install glfw-devel

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install libglfw3-dev

Finally you can compile Embree using CMake. Create a build directory inside
the Embree root directory and execute ccmake .. inside this build directory.

mkdir build
cd build
ccmake ..

Per default CMake will use the compilers specified with the CC and CXX en-
vironment variables. Should you want to use a different compiler, run cmake
first and set the CMAKE_CXX_COMPILER and CMAKE_C_COMPILER variables to the
desired compiler. For example, to use the Intel® Compiler instead of the default
GCC on most Linux machines (g++ and gcc), execute

cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc ..

Similarly, to use Clang set the variables to clang++ and clang, respectively.
Note that the compiler variables cannot be changed anymore after the first run
of cmake or ccmake.

Running ccmake will open a dialog where you can perform various config-
urations as described below in CMake Configuration. After having configured
Embree, press c (for configure) and g (for generate) to generate a Makefile and
leave the configuration. The code can be compiled by executing make.

make

The executables will be generated inside the build folder. We recommend to
finally install the Embree library and header files on your system. Therefore set
the CMAKE_INSTALL_PREFIX to /usr in cmake and type:

sudo make install

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then you
have to make sure the path /usr/local/lib is in your LD_LIBRARY_PATH.

You can also uninstall Embree again by executing:

sudo make uninstall

If you cannot install Embree on your system (e.g. when you don’t have ad-
ministrator rights) you need to add embree_root_directory/build to your LD_LI-
BRARY_PATH.

http://www.macports.org/

Compiling Embree 26

3.2 Windows

Embree is tested using the following compilers under Windows:

• Visual Studio 2019
• Visual Studio 2017
• Visual Studio 2015 (Update 1)
• Intel® Compiler 2019 Update 6
• Intel® Compiler 2017 Update 8
• LLVM Clang 9.0.0

To compile Embree for AVX-512 you have to use the Intel® Compiler.
Embree supports using the Intel® Threading Building Blocks (TBB) as the

tasking system. For performance and flexibility reasons we recommend to use
Embree with the Intel® Threading Building Blocks (TBB) and best also use TBB
inside your application. Optionally you can disable TBB in Embree through the
EMBREE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB) installa-
tion that comes with the Intel® Compiler, or you can install the binary distribu-
tion of TBB directly from www.threadingbuildingblocks.org into a folder named
tbb into your Embree root directory. You also have tomake sure that the libraries
tbb.dll and tbb_malloc.dll can be found when executing your Embree appli-
cations, e.g. by putting the path to these libraries into your PATH environment
variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straightforward parallelization of an entire renderer. When installing ISPC,make
sure to download an ISPC version from ispc.github.io that is compatible with
your Visual Studio version. After installation, put the path to ispc.exe per-
manently into your PATH environment variable or you need to correctly set the
ISPC_EXECUTABLE variable during CMake configuration. If you do not want to
use ISPC then you can disable EMBREE_ISPC_SUPPORT in CMake.

We have tested Embree with the following ISPC versions:

• ISPC 1.14.1
• ISPC 1.13.0
• ISPC 1.12.0
• ISPC 1.9.2

You additionally have to install CMake (version 2.8.11 or higher). Note that
you need a native Windows CMake installation, because CMake under Cygwin
cannot generate solution files for Visual Studio.

3.2.1 Using the IDE
Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for a
32-bit build or “Visual Studio 12 2013 Win64” for a 64-bit build.

To use a different compiler than the Microsoft Visual C++ compiler, you addi-
tionally need to specify the proper compiler toolset through the option “Optional
toolset to use (-T parameter)”. E.g. to use Clang for compilation set the toolset
to “LLVM_v142”, to use the Intel® Compiler 2017 for compilation set the toolset
to “Intel C++ Compiler 17.0”.

Do not change the toolset manually in a solution file (neither through the
project properties dialog, nor through the “Use Intel Compiler” project context
menu), because then some compiler specific command line options cannot be set
by CMake.

https://www.threadingbuildingblocks.org/download
https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Compiling Embree 27

Most configuration parameters described in the CMake Configuration can be
set under Windows as well. Finally, click “Generate” to create the Visual Studio
solution files.

The following CMake options are only available under Windows:

• CMAKE_CONFIGURATION_TYPE: List of generated configurations. Default
value is Debug;Release;RelWithDebInfo.

• USE_STATIC_RUNTIME: Use the static version of the C/C++ runtime library.
This option is turned OFF by default.

Use the generated Visual Studio solution file embree2.sln to compile the
project. To build Embree with support for the AVX2 instruction set you need at
least Visual Studio 2013 (Update 4).

We recommend enabling syntax highlighting for the .ispc source and .isph
header files. To do so open Visual Studio, go to Tools ⇒ Options ⇒ Text Editor
⇒ File Extension and add the isph and ispc extensions for the “Microsoft Visual
C++” editor.

3.2.2 Using theCommand Line
Embree can also be configured and built without the IDE using the Visual Studio
command prompt:

cd path\to\embree
mkdir build
cd build
cmake -G "Visual Studio 12 2013 Win64" ..
cmake --build . --config Release

To use the Intel® Compiler, set the proper toolset, e.g. for Intel Compiler 17.0:

cmake -G "Visual Studio 12 2013 Win64" -T "Intel C++ Compiler 17.0" ..
cmake --build . --config Release

You can also build only some projects with the --target switch. Additional
parameters after “--” will be passed to msbuild. For example, to build the Em-
bree library in parallel use

cmake --build . --config Release --target embree -- /m

3.3 CMakeConfiguration

The default CMake configuration in the configuration dialog should be appro-
priate for most usages. The following list describes all parameters that can be
configured in CMake:

• CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Releasemode (Release) (default), and Releasemodewith enabled assertions
and debug symbols (RelWithDebInfo).

• EMBREE_STACK_PROTECTOR: Enables protection of return address from
buffer overwrites. This option is OFF by default.

• EMBREE_ISPC_SUPPORT: Enables ISPC support of Embree. This option is
ON by default.

Compiling Embree 28

• EMBREE_STATIC_LIB: Builds Embree as a static library (OFF by default).
Further multiple static libraries are generated for the different ISAs se-
lected (e.g. embree3.a, embree3_sse42.a, embree3_avx.a, embree3_
avx2.a, embree3_avx512.a). You have to link these libraries in exactly
this order of increasing ISA.

• EMBREE_API_NAMESPACE: Specifies a namespace name to put all Embree
API symbols inside. By default no namespace is used and plain C symbols
exported.

• EMBREE_LIBRARY_NAME: Specifies the name of the Embree library file cre-
ated. By default the name embree3 is used.

• EMBREE_IGNORE_CMAKE_CXX_FLAGS: When enabled, Embree ignores de-
fault CMAKE_CXX_FLAGS. This option is turned ON by default.

• EMBREE_TUTORIALS: Enables build of Embree tutorials (default ON).

• EMBREE_BACKFACE_CULLING: Enables backface culling, i.e. only surfaces
facing a ray can be hit. This option is turned OFF by default.

• EMBREE_COMPACT_POLYS: Enables compact tris/quads, i.e. only geomIDs
and primIDs are stored inside the leaf nodes.

• EMBREE_FILTER_FUNCTION: Enables the intersection filter function fea-
ture (ON by default).

• EMBREE_RAY_MASK: Enables the ray masking feature (OFF by default).

• EMBREE_RAY_PACKETS: Enables ray packet traversal kernels. This feature
is turnedON by default. When turned on packet traversal is used internally
and packets passed to rtcIntersect4/8/16 are kept intact in callbacks (when
the ISA of appropiate width is enabled).

• EMBREE_IGNORE_INVALID_RAYS: Makes code robust against the risk of
full-tree traversals caused by invalid rays (e.g. rays containing INF/NaN
as origins). This option is turned OFF by default.

• EMBREE_TASKING_SYSTEM: Chooses between Intel® Threading TBB Build-
ing Blocks (TBB), Parallel Patterns Library (PPL) (Windows only), or an
internal tasking system (INTERNAL). By default TBB is used.

• EMBREE_TBB_ROOT: If Intel® Threading TBB Building Blocks (TBB) is used
as a tasking system, search the library in this directory tree.

• EMBREE_TBB_POSTFIX: If Intel® Threading TBB Building Blocks (TBB) is
used as a tasking system, link to tbb.(so,dll,lib). Defaults to the empty
string.

• EMBREE_TBB_DEBUG_ROOT: If Intel® Threading TBB Building Blocks (TBB)
is used as a tasking system, search the library in this directory tree in De-
bug mode. Defaults to EMBREE_TBB_ROOT.

• EMBREE_TBB_DEBUG_POSTFIX: If Intel® Threading TBB Building Blocks
(TBB) is used as a tasking system, link to tbb.(so,dll,lib) in Debug mode.
Defaults to ”_debug”.

• EMBREE_MAX_ISA: Select highest supported ISA (SSE2, SSE4.2, AVX, AVX2,
AVX512, or NONE). When set to NONE the EMBREE_ISA_* variables can
be used to enable ISAs individually. By default the option is set to AVX2.

• EMBREE_ISA_SSE2: Enables SSE2when EMBREE_MAX_ISA is set toNONE.
By default this option is turned OFF.

Compiling Embree 29

• EMBREE_ISA_SSE42: Enables SSE4.2 when EMBREE_MAX_ISA is set to
NONE. By default this option is turned OFF.

• EMBREE_ISA_AVX: Enables AVXwhen EMBREE_MAX_ISA is set to NONE.
By default this option is turned OFF.

• EMBREE_ISA_AVX2: Enables AVX2 when EMBREE_MAX_ISA is set to
NONE. By default this option is turned OFF.

• EMBREE_ISA_AVX512: Enables AVX-512 for Skylakewhen EMBREE_MAX_ISA
is set to NONE. By default this option is turned OFF.

• EMBREE_GEOMETRY_TRIANGLE: Enables support for trianglegeometries (ON
by default).

• EMBREE_GEOMETRY_QUAD: Enables support for quad geometries (ON by de-
fault).

• EMBREE_GEOMETRY_CURVE: Enables support for curve geometries (ON by
default).

• EMBREE_GEOMETRY_SUBDIVISION: Enables support for subdivision geome-
tries (ON by default).

• EMBREE_GEOMETRY_INSTANCE: Enables support for instances (ON by de-
fault).

• EMBREE_GEOMETRY_USER: Enables support for user defined geometries
(ON by default).

• EMBREE_GEOMETRY_POINT: Enables support for point geometries (ON by
default).

• EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR: Specifies a fac-
tor that controls the self intersection avoidance feature for flat curves. Flat
curve intersections which are closer than curve_radius*EMBREE_CURVE_
SELF_INTERSECTION_AVOIDANCE_FACTOR to the ray origin are ignored.
A value of 0.0f disables self intersection avoidance while 2.0f is the default
value.

• EMBREE_MIN_WIDTH: Enabled the min-width feature, which allows increas-
ing the radius of curves and points to match some amount of pixels. See
[rtcSetGeometryMaxRadiusScale] for more details.

• EMBREE_MAX_INSTANCE_LEVEL_COUNT: Specifies the maximum number of
nested instance levels. Should be greater than 0; the default value is 1. In-
stances nested any deeper than this value will silently disappear in release
mode, and cause assertions in debug mode.

30

Chapter 4

Using Embree

Themost convenient way of using Embree is throughCMake. Just let CMake find
Embree using the FIND_PACKAGE function inside your CMakeLists.txt file:

FIND_PACKAGE(embree 3.0 REQUIRED)

If you installed Embree using the Linux RPMormacOS PKG installer, this will
automatically find Embree. If you used the zip or tar.gz files to extract Embree,
you need to set the embree_DIR variable to the folder you extracted Embree to.
If you used the Windows MSI installer, you need to set embree_DIR to point to
the Embree install location (e.g. C:\Program Files\Intel\Embree3).

The FIND_PACKAGE function will create an embree target that you can add to
your target link libraries:

TARGET_LINK_LIBRARIES(application embree)

Now please have a look at the Embree Tutorials source code and the Embree
API section to get started.

31

Chapter 5

EmbreeAPI

The Embree API is a low-level C99 ray tracing API which can be used to construct
3D scenes and perform ray queries of different types inside these scenes. All API
calls carry the prefix rtc (or RTC for types) which stands for ray tracing core.

The API also exists in an ISPC version, which is almost identical but contains
additional functions that operate on ray packets with a size of the native SIMD
width used by ISPC. For simplicity this document refers to the C99 version of the
API functions. For changes when upgrading from the Embree 2 to the current
Embree 3 API see Section Upgrading from Embree 2 to Embree 3.

The API supports scenes consisting of different geometry types such as trian-
gle meshes, quad meshes (triangle pairs), grid meshes, flat curves, round curves,
oriented curves, subdivisionmeshes, instances, and user-defined geometries. See
Section Scene Object for more information.

Finding the closest hit of a ray segment with the scene (rtcIntersect-type
functions), and determining whether any hit between a ray segment and the
scene exists (rtcOccluded-type functions) are both supported. TheAPI supports
queries for single rays, ray packets, and ray streams. See Section Ray Queries for
more information.

The API is designed in an object-oriented manner, e.g. it contains device ob-
jects (RTCDevice type), scene objects (RTCScene type), geometry objects (RTC-
Geometry type), buffer objects (RTCBuffer type), and BVHobjects (RTCBVH type).
All objects are reference counted, and handles can be released by calling the ap-
propriate release function (e.g. rtcReleaseDevice) or retained by incrementing
the reference count (e.g. rtcRetainDevice). In general, API calls that access the
same object are not thread-safe, unless specified differently. However, attaching
geometries to the same scene and performing ray queries in a scene is thread-
safe.

5.1 DeviceObject

Embree supports a device concept, which allows different components of the
application to use the Embree API without interfering with each other. An ap-
plication typically first creates a device using the rtcNewDevice function. This
device can then be used to construct further objects, such as scenes and geome-
tries. Before the application exits, it should release all devices by invoking rtcRe-
leaseDevice. An application typically creates only a single device. If required
differently, it should only use a small number of devices at any given time.

Each user thread has its own error flag per device. If an error occurs when
invoking an API function, this flag is set to an error code (if it isn’t already set
by a previous error). See Section rtcGetDeviceError for information on how to
read the error code and Section rtcSetDeviceErrorFunction on how to register a

Embree API 32

callback that is invoked for each error encountered. It is recommended to always
set a error callback function, to detect all errors.

5.2 SceneObject

A scene is a container for a set of geometries, and contains a spatial acceleration
structure which can be used to perform different types of ray queries.

A scene is created using the rtcNewScene function call, and released using
the rtcReleaseScene function call. To populate a scene with geometries use
the rtcAttachGeometry call, and to detach them use the rtcDetachGeome-
try call. Once all scene geometries are attached, an rtcCommitScene call (or
rtcJoinCommitScene call) will finish the scene description and trigger building
of internal data structures. After the scene got committed, it is safe to perform
ray queries (see Section Ray Queries) or to query the scene bounding box (see
rtcGetSceneBounds and rtcGetSceneLinearBounds).

If scene geometries getmodified or attached or detached, the rtcCommitScene
call must be invoked before performing any further ray queries for the scene; oth-
erwise the effect of the ray query is undefined. The modification of a geometry,
committing the scene, and tracing of rays must always happen sequentially, and
never at the same time. Any API call that sets a property of the scene or geome-
tries contained in the scene count as scene modification, e.g. including setting of
intersection filter functions.

Scene flags can be used to configure a scene to use less memory (RTC_SCENE_
FLAG_COMPACT), use more robust traversal algorithms (RTC_SCENE_FLAG_RO-
BUST), and to optimize for dynamic content. See Section rtcSetSceneFlags for
more details.

A build quality can be specified for a scene to balance between accelera-
tion structure build performance and ray query performance. See Section rtc-
SetSceneBuildQuality for more details on build quality.

5.3 GeometryObject

A new geometry is created using the rtcNewGeometry function. Depending on
the geometry type, different buffers must be bound (e.g. using rtcSetShared-
GeometryBuffer) to set up the geometry data. In most cases, binding of a vertex
and index buffer is required. The number of primitives and vertices of that ge-
ometry is typically inferred from the size of these bound buffers.

Changes to the geometry always must be committed using the rtcCommit-
Geometry call before using the geometry. After committing, a geometry is not
included in any scene. A geometry can be added to a scene by using the rt-
cAttachGeometry function (to automatically assign a geometry ID) or using the
rtcAttachGeometryById function (to specify the geometry ID manually). A
geometry can get attached to multiple scenes.

All geometry types support multi-segment motion blur with an arbitrary
number of equidistant time steps (in the range of 2 to 129) inside a user speci-
fied time range. Each geometry can have a different number of time steps and
a different time range. The motion blur geometry is defined by linearly inter-
polating the geometries of neighboring time steps. To construct a motion blur
geometry, first the number of time steps of the geometry must be specified using
the rtcSetGeometryTimeStepCount function, and then a vertex buffer for each
time step must be bound, e.g. using the rtcSetSharedGeometryBuffer func-
tion. Optionally, a time range defining the start (and end time) of the first (and
last) time step can be set using the rtcSetGeometryTimeRange function. This
feature will also allow geometries to appear and disappear during the camera
shutter time if the time range is a sub range of [0,1].

Embree API 33

The API supports per-geometry filter callback functions (see rtcSetGeom-
etryIntersectFilterFunction and rtcSetGeometryOccludedFilterFunc-
tion) that are invoked for each intersection found during the rtcIntersect-
type or rtcOccluded-type calls. The former ones are called geometry intersec-
tion filter functions, the latter ones geometry occlusion filter functions. These
filter functions are designed to be used to ignore intersections outside of a user-
defined silhouette of a primitive, e.g. to model tree leaves using transparency
textures.

5.4 RayQueries

The API supports finding the closest hit of a ray segment with the scene (rtcIn-
tersect-type functions), and determining whether any hit between a ray seg-
ment and the scene exists (rtcOccluded-type functions).

Supported are single ray queries (rtcIntersect1 and rtcOccluded1) as
well as ray packet queries for ray packets of size 4 (rtcIntersect4 and rt-
cOccluded4), ray packets of size 8 (rtcIntersect8 and rtcOccluded8), and
ray packets of size 16 (rtcIntersect16 and rtcOccluded16).

Ray streams in a variety of layouts are supported as well, such as streams of
single rays (rtcIntersect1M and rtcOccluded1M), streams of pointers to sin-
gle rays (rtcIntersect1p and rtcOccluded1p), streams of ray packets (rtcIn-
tersectNM and rtcOccludedNM), and large packet-like streams in structure of
pointer layout (rtcIntersectNp and rtcOccludedNp).

See Sections rtcIntersect1 and rtcOccluded1 for a detailed description of how
to set up and trace a ray.

See tutorial Triangle Geometry for a complete example of how to trace single
rays and ray packets. Also have a look at the tutorial Stream Viewer for an
example of how to trace ray streams.

5.5 Point Queries

The API supports traversal of the BVH using a point query object that specifies a
location and a query radius. For all primitives intersecting the according domain,
a user defined callback function is called which allows queries such as finding the
closest point on the surface geometries of the scene (see Tutorial Closest Point)
or nearest neighbour queries (see Tutorial Voronoi).

See Section rtcPointQuery for a detailed description of how to set up point
queries.

5.6 Collision Detection

The Embree API also supports collision detection queries between two scenes
consisting only of user geometries. Embree only performs broadphase collision
detection, the narrow phase detection can be performed through a callback func-
tion.

See Section rtcCollide for a detailed description of how to set up collision
detection.

Seen tutorial Collision Detection for a complete example of collsion detection
being used on a simple cloth solver.

Embree API 34

5.7 Miscellaneous

A context filter function, which can be set per ray query is supported (see
rtcInitIntersectContext). This filter function is designed to change the
semantics of the ray query, e.g. to accumulate opacity for transparent shadows,
count the number of surfaces along a ray, collect all hits along a ray, etc.

The internal algorithms to build a BVH are exposed through the RTCBVH ob-
ject and rtcBuildBVH call. This call makes it possible to build a BVH in a user-
specified format over user-specified primitives. See the documentation of the
rtcBuildBVH call for more details.

For getting themost performance out of Embree, see the Section Performance
Recommendations.

35

Chapter 6

Upgrading fromEmbree2toEm-
bree 3

We decided to introduce an improved API in Embree 3 that is not backward com-
patible with the Embree 2 API. This step was required to remove various dep-
recated API functions that accumulated over time, improve extensibility of the
API, fix suboptimal design decisions, fix design mistakes (such as incompatible
single ray and ray packet layouts), clean up inconsistent naming, and increase
flexibility.

To make porting to the new API easy, we provide a conversion script that
can do most of the work, and will annotate the code with remaining changes
required. The script can be invoked the following way for CPP files:

./scripts/cpp-patch.py --patch embree2_to_embree3.patch
--in infile.cpp --out outfile.cpp

When invoked for ISPC files, add the --ispc option:

./scripts/cpp-patch.py --ispc --patch embree2_to_embree3.patch
--in infile.ispc --out outfile.ispc

Apply the script to each source file of your project that contains Embree API
calls or types. The input file and output file can also be identical to perform
the patch in-place. Please always backup your original code before running the
script, and inspect the code changes done by the script using diff (e.g. git diff),
to make sure no undesired code locations got changed. Grep the code for com-
ments containing EMBREE_FIXME and perform the action described in the com-
ment.

The following changes need to be performed when switching from Embree
2 to Embree 3. Most of these changes are automatically done by the script if not
described differently.

We strongly recommend to set an error callback function (see rtcSetDe-
viceErrorFunction) when porting to Embree 3 to detect all runtime errors
early.

6.1 Device

• rtcInit and rtcExit got removed. Please use the device concept using
the rtcNewDevice and rtcReleaseDevice functions instead.

• Functions that conceptually should operate on a device but did not get a
device argument got removed. The upgrade script replaces these functions
by the proper functions that operate on a device, however, manually prop-
agating the device handle to these function calls might still be required.

Upgrading from Embree 2 to Embree 3 36

6.2 Scene

• The API no longer distinguishes between a static and a dynamic scene.
Some users had issues as they wanted to do minor modifications to static
scenes, but maintain high traversal performance.
The new approach gives more flexibility, as each scene is changeable, and
build quality settings can be changed on a commit basis to balance between
build performance and render performance.

• The rtcCommitThread function got removed; use rtcJoinCommitScene
instead.

• The scene now supports different build quality settings. Please use those
instead of the previous way of RTC_SCENE_STATIC, RTC_SCENE_DYNAMIC,
and RTC_SCENE_HIGH_QUALITY flags.

6.3 Geometry

• There is now only one rtcNewGeometry function to create geometries
which gets passed an enum to specify the type of geometry to create. The
number of vertices and primitives of the geometries is inferred from the
size of data buffers.

• We introduced an object type RTCGeometry for all geometries. Previously
a geometry was not a standalone object and could only exist inside a scene.
The new approach comes with more flexibility and more readable code.
Operations like rtcInterpolate can now be performed on the geometry
object directly without the need of a scene. Further, an application can
choose to create its geometries independent of a scene, e.g. each time a
geometry node is added to its scene graph.
This modification changed many API functions to get passed one RTC-
Geometry object instead of a RTCScene and geomID. The script does all
required changed automatically. However, in some cases the script may in-
troduce rtcGetGeometry(scene, geomID) calls to retrieve the geometry
handle. Best store the geometry handle inside your scene representation
(and release it in the destructor) and access the handle directly instead of
calling rtcGetGeometry.

• Geometries are not included inside a scene anymore but can be attached
to a multiple scenes using the rtcAttachGeomety or rtcAttachGeome-
tryByID functions.

• As geometries are separate objects, commit semantics got introduced for
them too. Thus geometries must be committed through the rtcCommit-
Geometry call before getting used. This allows for earlier error checking
and pre-calculating internal data per geometry object.
Such commit points were previously not required in the Embree 2 API.
The upgrade script attempts to insert the commits automatically, but can-
not do so properly under all circumstances. Thus please check if every
rtcCommitGeometry call inserted by the script is properly placed, and if a
rtcCommitGeometry call is placed after a sequence of changes to a geom-
etry.

• Only the latest version of the previous displacement function call (RTCDis-
placementFunc2) is now supported, and the callback is passed as a struc-
ture containing all arguments.

Upgrading from Embree 2 to Embree 3 37

• The deprecated RTCBoundaryMode type and rtcSetBoundaryMode func-
tion got removed and replaced by RTCSubdivisionMode enum and the
rtcSetGeometrySubdivisionMode function. The script does this replace-
ment automatically.

• Ribbon curves and lines now avoid self-intersections automatically The ap-
plication can be simplified by removing special code paths that previously
did the self-intersection handling.

• The previous Embree 2 way of instancing was suboptimal as it required
user geometries to update the instID field of the ray differently when used
inside an instanced scene or inside a top-level scene. The user geometry
intersection code now just has to copy the context.instID field into the
ray.instID field to function properly under all circumstances.

• The internal instancing code will update the context.instID field prop-
erly when entering or leaving an instance. When instancing is imple-
mented manually through user geometries, the code must be modified to
set the context.instID field properly and no longer pass instID through
the ray. This change must done manually and cannot be performed by the
script.

• We flipped the direction of the geometry normal to the widely used con-
vention that a shape with counter-clockwise layout of vertices has the nor-
mal pointing upwards (right-hand rule). Most modeling tools follow that
convention.
The conversion script does not perform this change, thus if required adjust
your code to flip Ng for triangle, quad, and subdivision surfaces.

6.4 Buffers

• With Embree 3 we are introducing explicit RTCBuffer objects. However,
you can still use the short way of sharing buffers with Embree through the
rtcSetSharedGeometryBuffer call.

• The rtcMapBuffer and rtcUnmapBuffer API calls were removed, and we
added the rtcGetBufferData call instead.
Previously the rtcMapBuffer call had the semantics of creating an internal
buffer when no buffer was shared for the corresponding buffer slot. These
invocations of rtcMapBuffer must be replaced by an explicit creation of
an internally managed buffer using the rtcNewGeometryBuffer function.
The upgrade script cannot always detect if the rtcMapBuffer call would
create an internal buffer or just map the buffer pointer. Thus check
whether the rtcNewGeometryBuffer and rtcGetBufferData calls are
correct after the conversion.

• The rtcUpdateGeometryBuffer function now must be called for every
buffer that got modified by the application. Note that the conversion script
cannot automatically detect each location where a buffer update is now
required.

• The buffer type no longer encodes the time step or user vertex buffer index.
Now RTC_VERTEX_BUFFER_TYPE and additional slot specifies the vertex
buffer for a specific time step, and RTC_USER_VERTEX_BUFFER_TYPE and
additional slot specifies a vertex attribute.

Upgrading from Embree 2 to Embree 3 38

6.5 Miscellaneous

• The header files for Embree 3 are now inside the embree3 folder (instead
of embree2 folder) and libembree.so is now called libembree3.so to be
able to install multiple Embree versions side by side. We made the headers
C99 compliant.

• All API objects are now reference counted with release functions to decre-
ment and retain functions to increment the reference count (if required).

• Most callback functions no longer get different arguments as input, but a
pointer to a structure containing all arguments. This results in more read-
able code, faster callback invocation (as some arguments do not change
between invocations) and is extensible, as new members to the structure
can be later added in a backward compatible way (if required).
The conversion script can convert the definition and declaration of the old
callback functions in most cases. Before running the script, make sure that
you never type-cast a callback function when assigning it (as this has the
danger of assigning a callback function with a wrong type if the conver-
sion did not detect some callbacks as such). If the script does not detect a
callback function, make sure the argument types match exactly the types
in the header (e.g. write const int instead of int const or convert the
callback manually).

• An intersection context is now required for each ray query invocation. The
context should be initialized using the rtcInitIntersectContext func-
tion.

• The rtcIntersect-type functions get as input an RTCRayHit type, which
is similar to before, but has the ray and hit parts split into two sub-
structures.
The rtcOccluded-type functions get as input an RTCRay type, which does
not contain hit data anymore. When an occlusion is found, the tfar ele-
ment of the ray is set to -inf.
Required code changes cannot be done by the upgrade script and need to
be done manually.

• The ray layout for single rays and packets of rays had certain incompatibil-
ities (alignment of org and dir for single rays caused gaps in the single ray
layout that were not in the ray packet layout). This issue never showed up
because single rays and ray packets were separate in the system initially.
This layout issue is now fixed, and a single ray has the same layout as a
ray packet of size 1.

• Previously Embree supported placing additional data at the end of the ray
structure, and accessing that data inside user geometry callbacks and filter
callback functions.
With Embree 3 this is no longer supported, and the ray passed to a call-
back function may be copied to a different memory location. To attach
additional data to your ray, simply extend the intersection context with a
pointer to that data.
This change cannot be done by the script. Further, code will still work if
you extend the ray as the implementation did not change yet.

• The ray structure now contains an additional id and flags field. The id
can be used to store the index of the ray with respect to a ray packet or ray
stream. The flags is reserved for future use, and currently must be set to
0.

Upgrading from Embree 2 to Embree 3 39

• All previous intersection filter callback variants have been removed, except
for the RTCFilterFuncNwhich gets a varying size ray packet as input. The
semantics of this filter function type have changed from copying the hit on
acceptance to clearing the ray’s valid argument in case of non-acceptance.
This way, chaining multiple filters is more efficient.
We kept the guarantee that for rtcIntersect1/4/8/16 and rtcOccluded1/
4/8/16 calls the packet size and ray order will not change from the initial
size and ordering when entering a filter callback.

• We no longer export ISPC-specific symbols. This has the advantage that
certain linking issues went away, e.g. it is now possible to link an ISPC
application compiled for any combination of ISAs, and link this to an Em-
bree library compiled with a different set of ISAs. Previously the ISAs of
the application had to be a subset of the ISAs of Embree, and when the user
enabled exactly one ISA, they had to do this in Embree and the application.

• We no longer export the ISPC tasking system, which means that the appli-
cation has the responsibility to implement the ISPC tasking system itself.
ISPC comes with example code on how to do this. This change is not per-
formed by the script and must be done manually.

• Fixed many naming inconsistencies, and changed names of further API
functions. All these renamings are properly done by the script and need
no further attention.

40

Chapter 7

EmbreeAPI Reference

7.1 rtcNewDevice

NAME

rtcNewDevice - creates a new device

SYNOPSIS

#include <embree3/rtcore.h>

RTCDevice rtcNewDevice(const char* config);

DESCRIPTION

This function creates a new device and returns a handle to this device. The device
object is reference counted with an initial reference count of 1. The handle can
be released using the rtcReleaseDevice API call.

The device object acts as a class factory for all other object types. All objects
created from the device (like scenes, geometries, etc.) hold a reference to the
device, thus the device will not be destroyed unless these objects are destroyed
first.

Objects are only compatible if they belong to the same device, e.g it is not
allowed to create a geometry in one device and attach it to a scene created with
a different device.

A configuration string (config argument) can be passed to the device con-
struction. This configuration string can be NULL to use the default configuration.

The following configuration is supported:

• threads=[int]: Specifies a number of build threads to use. A value of 0
enables all detected hardware threads. By default all hardware threads are
used.

• user_threads=[int]: Sets the number of user threads that can be used to
join and participate in a scene commit using rtcJoinCommitScene. The
tasking system will only use threads-user_threads many worker threads,
thus if the app wants to solely use its threads to commit scenes, just set
threads equal to user_threads. This option only has effect with the Intel(R)
Threading Building Blocks (TBB) tasking system.

• set_affinity=[0/1]: When enabled, build threads are affinitized to
hardware threads. This option is disabled by default on standard CPUs,
and enabled by default on Xeon Phi Processors.

Embree API Reference 41

• start_threads=[0/1]: When enabled, the build threads are started up-
front. This can be useful for benchmarking to exclude thread creation time.
This option is disabled by default.

• isa=[sse2,sse4.2,avx,avx2,avx512]: Use specified ISA. By default
the ISA is selected automatically.

• max_isa=[sse2,sse4.2,avx,avx2,avx512]: Configures the automated
ISA selection to use maximally the specified ISA.

• hugepages=[0/1]: Enables or disables usage of huge pages. Under Linux
huge pages are used by default but under Windows and macOS they are
disabled by default.

• enable_selockmemoryprivilege=[0/1]: When set to 1, this enables the
SeLockMemoryPrivilege privilege with is required to use huge pages on
Windows. This option has an effect only under Windows and is ignored
on other platforms. See Section Huge Page Support for more details.

• verbose=[0,1,2,3]: Sets the verbosity of the output. When set to 0, no
output is printed by Embree, when set to a higher level more output is
printed. By default Embree does not print anything on the console.

• frequency_level=[simd128,simd256,simd512]: Specifies the frequency
level the application want to run on, which can be either:

a) simd128 to run at highest frequency
b) simd256 to run at AVX2-heavy frequency level
c) simd512 to run at heavy AVX512 frequency level. When some fre-

quency level is specified, Embree will avoid doing optimizations that
may reduce the frequency level below the level specified. E.g. if your
app does not useAVX instructions setting “frequency_level=simd128”
will cause some CPUs to run at highest frequency, which may result
in higher application performance if you do much shading. If you ap-
plication heavily uses AVX code, you should best set the frequency
level to simd256. Per default Embree tries to avoid reducing the fre-
quency of the CPU by setting the simd256 level only when the CPU
has no significant down clocking.

Different configuration options should be separated by commas, e.g.:

rtcNewDevice("threads=1,isa=avx");

EXITSTATUS

On success returns a handle of the created device. On failure returns NULL as
device and sets a per-thread error code that can be queried using rtcGetDe-
viceError(NULL).

SEEALSO

rtcRetainDevice, rtcReleaseDevice

Embree API Reference 42

7.2 rtcRetainDevice

NAME

rtcRetainDevice - increments the device reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcRetainDevice function incre-
ments the reference count of the passed device object (device argument). This
function together with rtcReleaseDevice allows to use the internal reference
counting in a C++ wrapper class to manage the ownership of the object.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewDevice, rtcReleaseDevice

Embree API Reference 43

7.3 rtcReleaseDevice

NAME

rtcReleaseDevice - decrements the device reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcReleaseDevice function decre-
ments the reference count of the passed device object (device argument). When
the reference count falls to 0, the device gets destroyed.

All objects created from the device (like scenes, geometries, etc.) hold a ref-
erence to the device, thus the device will not get destroyed unless these objects
are destroyed first.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewDevice, rtcRetainDevice

Embree API Reference 44

7.4 rtcGetDeviceProperty

NAME

rtcGetDeviceProperty - queries properties of the device

SYNOPSIS

#include <embree3/rtcore.h>

ssize_t rtcGetDeviceProperty(
RTCDevice device,
enum RTCDeviceProperty prop

);

DESCRIPTION

The rtcGetDeviceProperty function can be used to query properties (prop
argument) of a device object (device argument). The returned property is an
integer of type ssize_t.

Possible properties to query are:

• RTC_DEVICE_PROPERTY_VERSION: Queries the combined version number
(MAJOR.MINOR.PATCH) with two decimal digits per component. E.g. for
Embree 2.8.3 the integer 208003 is returned.

• RTC_DEVICE_PROPERTY_VERSION_MAJOR: Queries the major version num-
ber of Embree.

• RTC_DEVICE_PROPERTY_VERSION_MINOR: Queries the minor version num-
ber of Embree.

• RTC_DEVICE_PROPERTY_VERSION_PATCH: Queries the patch version num-
ber of Embree.

• RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: Queries whether the
rtcIntersect4 and rtcOccluded4 functions preserve packet size and ray
order when invoking callback functions. This is only the case if Embree is
compiled with EMBREE_RAY_PACKETS and SSE2 (or SSE4.2) enabled, and
if the machine it is running on supports SSE2 (or SSE4.2).

• RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: Queries whether the
rtcIntersect8 and rtcOccluded8 functions preserve packet size and ray
order when invoking callback functions. This is only the case if Embree
is compiled with EMBREE_RAY_PACKETS and AVX (or AVX2) enabled, and if
the machine it is running on supports AVX (or AVX2).

• RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: Querieswhether the
rtcIntersect16 and rtcOccluded16 functions preserve packet size and
ray order when invoking callback functions. This is only the case if Em-
bree is compiled with EMBREE_RAY_PACKETS and AVX512 enabled, and if
the machine it is running on supports AVX512.

• RTC_DEVICE_PROPERTY_RAY_STREAM_SUPPORTED: Querieswhether rtcIn-
tersect1M, rtcIntersect1Mp, rtcIntersectNM, rtcIntersectNp, rt-
cOccluded1M, rtcOccluded1Mp, rtcOccludedNM, and rtcOccludedNp
are supported. This is only the case if Embree is compiled with EMBREE_
RAY_PACKETS enabled.

Embree API Reference 45

• RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: Querieswhether raymasks
are supported. This is only the case if Embree is compiled with EMBREE_
RAY_MASK enabled.

• RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: Queries whether
back face culling is enabled. This is only the case if Embree is compiled
with EMBREE_BACKFACE_CULLING enabled.

• RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: Querieswhether com-
pact polys is enabled. This is only the case if Embree is compiled with
EMBREE_COMPACT_POLYS enabled.

• RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: Querieswhether
filter functions are supported, which is the case if Embree is compiled with
EMBREE_FILTER_FUNCTION enabled.

• RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: Querieswhether
invalid rays are ignored, which is the case if Embree is compiled with EM-
BREE_IGNORE_INVALID_RAYS enabled.

• RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: Querieswhether
triangles are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_TRIANGLE enabled.

• RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: Queries whether
quads are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_QUAD enabled.

• RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: Querieswhether
subdivision meshes are supported, which is the case if Embree is compiled
with EMBREE_GEOMETRY_SUBDIVISION enabled.

• RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: Queries whether
curves are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_CURVE enabled.

• RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: Queries whether
points are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_POINT enabled.

• RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: Queries whether
user geometries are supported, which is the case if Embree is compiled
with EMBREE_GEOMETRY_USER enabled.

• RTC_DEVICE_PROPERTY_TASKING_SYSTEM: Queries the tasking system
Embree is compiled with. Possible return values are:

0. internal tasking system
1. Intel Threading Building Blocks (TBB)
2. Parallel Patterns Library (PPL)

• RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: Querieswhether rtcJoin-
CommitScene is supported. This is not the case when Embree is compiled
with PPL or older versions of TBB.

• RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: Querieswhether
rtcCommitScene can get invoked from multiple TBB worker threads con-
currently. This feature is only supported starting with TBB 2019 Update
9.

Embree API Reference 46

EXITSTATUS

On success returns the value of the queried property. For properties returning a
boolean value, the return value 0 denotes false and 1 denotes true.

On failure zero is returned and an error code is set that can be queried using
rtcGetDeviceError.

Embree API Reference 47

7.5 rtcGetDeviceError

NAME

rtcGetDeviceError - returns the error code of the device

SYNOPSIS

#include <embree3/rtcore.h>

RTCError rtcGetDeviceError(RTCDevice device);

DESCRIPTION

Each thread has its own error code per device. If an error occurs when calling
an API function, this error code is set to the occurred error if it stores no pre-
vious error. The rtcGetDeviceError function reads and returns the currently
stored error and clears the error code. This assures that the returned error code is
always the first error occurred since the last invocation of rtcGetDeviceError.

Possible error codes returned by rtcGetDeviceError are:

• RTC_ERROR_NONE: No error occurred.

• RTC_ERROR_UNKNOWN: An unknown error has occurred.

• RTC_ERROR_INVALID_ARGUMENT: An invalid argument was specified.

• RTC_ERROR_INVALID_OPERATION: The operation is not allowed for the
specified object.

• RTC_ERROR_OUT_OF_MEMORY: There is not enough memory left to com-
plete the operation.

• RTC_ERROR_UNSUPPORTED_CPU: The CPU is not supported as it does not
support the lowest ISA Embree is compiled for.

• RTC_ERROR_CANCELLED: The operation got canceled by a memory monitor
callback or progress monitor callback function.

When the device construction fails, rtcNewDevice returns NULL as device.
To detect the error code of a such a failed device construction, pass NULL as de-
vice to the rtcGetDeviceError function. For all other invocations of rtcGet-
DeviceError, a proper device pointer must be specified.

EXITSTATUS

Returns the error code for the device.

SEEALSO

rtcSetDeviceErrorFunction

Embree API Reference 48

7.6 rtcSetDeviceErrorFunction

NAME

rtcSetDeviceErrorFunction - sets an error callback function for the device

SYNOPSIS

#include <embree3/rtcore.h>

typedef void (*RTCErrorFunction)(
void* userPtr,
RTCError code,
const char* str

);

void rtcSetDeviceErrorFunction(
RTCDevice device,
RTCErrorFunction error,
void* userPtr

);

DESCRIPTION

Using the rtcSetDeviceErrorFunction call, it is possible to set a callback func-
tion (error argument) with payload (userPtr argument), which is called when-
ever an error occurs for the specified device (device argument).

Only a single callback function can be registered per device, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function.

When the registered callback function is invoked, it gets passed the user-
defined payload (userPtr argument as specified at registration time), the error
code (code argument) of the occurred error, as well as a string (str argument)
that further describes the error.

The error code is also set if an error callback function is registered.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetDeviceError

Embree API Reference 49

7.7 rtcSetDeviceMemoryMonitorFunction

NAME

rtcSetDeviceMemoryMonitorFunction - registers a callback function
to track memory consumption

SYNOPSIS

#include <embree3/rtcore.h>

typedef bool (*RTCMemoryMonitorFunction)(
void* userPtr,
ssize_t bytes,
bool post

);

void rtcSetDeviceMemoryMonitorFunction(
RTCDevice device,
RTCMemoryMonitorFunction memoryMonitor,
void* userPtr

);

DESCRIPTION

Using the rtcSetDeviceMemoryMonitorFunction call, it is possible to regis-
ter a callback function (memoryMonitor argument) with payload (userPtr argu-
ment) for a device (device argument), which is calledwhenever internalmemory
is allocated or deallocated by objects of that device. Using this memory monitor
callback mechanism, the application can track the memory consumption of an
Embree device, and optionally terminate API calls that consume too much mem-
ory.

Only a single callback function can be registered per device, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function.

Once registered, the Embree device will invoke the memory monitor callback
function before or after it allocates or frees important memory blocks. The call-
back function gets passed the payload as specified at registration time (userPtr
argument), the number of bytes allocated or deallocated (bytes argument), and
whether the callback is invoked after the allocation or deallocation took place
(post argument). The callback function might get called from multiple threads
concurrently.

The application can track the current memory usage of the Embree device
by atomically accumulating the bytes input parameter provided to the callback
function. This parameter will be >0 for allocations and <0 for deallocations.

Embree will continue its operation normally when returning true from the
callback function. If false is returned, Embree will cancel the current opera-
tion with the RTC_ERROR_OUT_OF_MEMORY error code. Issuing multiple cancel
requests from different threads is allowed. Canceling will only happen when the
callback was called for allocations (bytes > 0), otherwise the cancel request will
be ignored.

If a callback to cancel was invoked before the allocation happens (post ==
false), then the bytes parameter should not be accumulated, as the allocation
will never happen. If the callback to cancel was invoked after the allocation
happened (post == true), then the bytes parameter should be accumulated,
as the allocation properly happened and a deallocation will later free that data
block.

Embree API Reference 50

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewDevice

Embree API Reference 51

7.8 rtcNewScene

NAME

rtcNewScene - creates a new scene

SYNOPSIS

#include <embree3/rtcore.h>

RTCScene rtcNewScene(RTCDevice device);

DESCRIPTION

This function creates a new scene bound to the specified device (device argu-
ment), and returns a handle to this scene. The scene object is reference counted
with an initial reference count of 1. The scene handle can be released using the
rtcReleaseScene API call.

EXITSTATUS

On success a scene handle is returned. On failure NULL is returned and an error
code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcRetainScene, rtcReleaseScene

Embree API Reference 52

7.9 rtcGetSceneDevice

NAME

rtcGetSceneDevice - returns the device the scene got created in

SYNOPSIS

#include <embree3/rtcore.h>

RTCDevice rtcGetSceneDevice(RTCScene scene);

DESCRIPTION

This function returns the device object the scene got created in. The returned
handle own one additional reference to the device object, thus you should need
to call rtcReleaseDevice when the returned handle is no longer required.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcReleaseDevice

Embree API Reference 53

7.10 rtcRetainScene

NAME

rtcRetainScene - increments the scene reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcRetainScene function increments
the reference count of the passed scene object (scene argument). This function
together with rtcReleaseScene allows to use the internal reference counting
in a C++ wrapper class to handle the ownership of the object.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewScene, rtcReleaseScene

Embree API Reference 54

7.11 rtcReleaseScene

NAME

rtcReleaseScene - decrements the scene reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcReleaseScene function decre-
ments the reference count of the passed scene object (scene argument). When
the reference count falls to 0, the scene gets destroyed.

The scene holds a reference to all attached geometries, thus if the scene gets
destroyed, all geometries get detached and their reference count decremented.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewScene, rtcRetainScene

Embree API Reference 55

7.12 rtcAttachGeometry

NAME

rtcAttachGeometry - attaches a geometry to the scene

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcAttachGeometry(
RTCScene scene,
RTCGeometry geometry

);

DESCRIPTION

The rtcAttachGeometry function attaches a geometry (geometry argument)
to a scene (scene argument) and assigns a geometry ID to that geometry. All
geometries attached to a scene are defined to be included inside the scene. A
geometry can get attached to multiplee scene. The geometry ID is unique for the
scene, and is used to identify the geometry when hit by a ray during ray queries.

This function is thread-safe, thus multiple threads can attach geometries to
a scene in parallel.

The geometry IDs are assigned sequentially, starting from 0, as long as no ge-
ometry got detached. If geometries got detached, the implementation will reuse
IDs in an implementation dependent way. Consequently sequential assignment
is no longer guaranteed, but a compact range of IDs.

These rules allow the application to manage a dynamic array to efficiently
map from geometry IDs to its own geometry representation. Alternatively, the
application can also use per-geometry user data to map to its geometry represen-
tation. See rtcSetGeometryUserData and rtcGetGeometryUserData for more
information.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryUserData, rtcGetGeometryUserData

Embree API Reference 56

7.13 rtcAttachGeometryByID

NAME

rtcAttachGeometryByID - attaches a geometry to the scene
using a specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

void rtcAttachGeometryByID(
RTCScene scene,
RTCGeometry geometry,
unsigned int geomID

);

DESCRIPTION

The rtcAttachGeometryByID function attaches a geometry (geometry argu-
ment) to a scene (scene argument) and assigns a user provided geometry ID
(geomID argument) to that geometry. All geometries attached to a scene are de-
fined to be included inside the scene. A geometry can get attached to multiple
scenes. The passed user-defined geometry ID is used to identify the geometry
when hit by a ray during ray queries. Using this function, it is possible to share
the same IDs to refer to geometries inside the application and Embree.

This function is thread-safe, thus multiple threads can attach geometries to
a scene in parallel.

The user-provided geometry ID must be unused in the scene, otherwise the
creation of the geometry will fail. Further, the user-provided geometry IDs
should be compact, as Embree internally creates a vector which size is equal to
the largest geometry ID used. Creating very large geometry IDs for small scenes
would thus cause a memory consumption and performance overhead.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcAttachGeometry

Embree API Reference 57

7.14 rtcDetachGeometry

NAME

rtcDetachGeometry - detaches a geometry from the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcDetachGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

This function detaches a geometry identified by its geometry ID (geomID argu-
ment) from a scene (scene argument). When detached, the geometry is no longer
contained in the scene.

This function is thread-safe, thus multiple threads can detach geometries
from a scene at the same time.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcAttachGeometry, rtcAttachGeometryByID

Embree API Reference 58

7.15 rtcGetGeometry

NAME

rtcGetGeometry - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry rtcGetGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometry function returns the geometry that is bound to the speci-
fied geometry ID (geomID argument) for the specified scene (scene argument).
This function just looks up the handle and does not increment the reference count.
If you want to get ownership of the handle, you need to additionally call rtcRe-
tainGeometry.

This function is not thread safe and thus can be used during rendering. How-
ever, it is generally recommended to store the geometry handle inside the ap-
plication’s geometry representation and look up the geometry handle from that
representation directly.

If you need a thread safe version of this function please use rtcGetGeometry-
ThreadSafe.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcAttachGeometry, rtcAttachGeometryByID, rtcGetGeometryThreadSafe

Embree API Reference 59

7.16 rtcGetGeometryThreadSafe

NAME

rtcGetGeometryThreadSafe - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry rtcGetGeometryThreadSafe(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometryThreadSafe function returns the geometry that is bound
to the specified geometry ID (geomID argument) for the specified scene (scene
argument). This function just looks up the handle and does not increment the
reference count. If you want to get ownership of the handle, you need to addi-
tionally call rtcRetainGeometry.

This function is thread safe and should NOT get used during rendering. If
you need a fast non-thread safe version during rendering please use the rtcGet-
Geometry function.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcAttachGeometry, rtcAttachGeometryByID, rtcGetGeometry

Embree API Reference 60

7.17 rtcCommitScene

NAME

rtcCommitScene - commits scene changes

SYNOPSIS

#include <embree3/rtcore.h>

void rtcCommitScene(RTCScene scene);

DESCRIPTION

The rtcCommitScene function commits all changes for the specified scene
(scene argument). This internally triggers building of a spatial acceleration
structure for the scene using all available worker threads. Ray queries can be
performed only after committing all scene changes.

If the application uses TBB 2019 Update 9 or later for parallelization of render-
ing, lazy scene construction during rendering is supported by rtcCommitScene.
Therefore rtcCommitScene can get called from multiple TBB worker threads
concurrently for the same scene. The rtcCommitScene function will then inter-
nally isolate the scene construction using a tbb::isolated_task_group. The alter-
native approach of using rtcJoinCommitScene which uses an tbb:task_arena
internally, is not recommended due to it’s high runtime overhead.

If scene geometries getmodified or attached or detached, the rtcCommitScene
call must be invoked before performing any further ray queries for the scene; oth-
erwise the effect of the ray query is undefined. The modification of a geometry,
committing the scene, and tracing of rays must always happen sequentially, and
never at the same time. Any API call that sets a property of the scene or geome-
tries contained in the scene count as scene modification, e.g. including setting of
intersection filter functions.

The kind of acceleration structure built can be influenced using scene flags
(see rtcSetSceneFlags), and the quality can be specified using the rtcSetSceneB-
uildQuality function.

Embree silently ignores primitives during spatial acceleration structure con-
struction that would cause numerical issues, e.g. primitives containing NaNs,
INFs, or values greater than 1.844E18f (as no reasonable calculations can be per-
formed with such values without causing overflows).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcJoinCommitScene

Embree API Reference 61

7.18 rtcJoinCommitScene

NAME

rtcJoinCommitScene - commits the scene from multiple threads

SYNOPSIS

#include <embree3/rtcore.h>

void rtcJoinCommitScene(RTCScene scene);

DESCRIPTION

The rtcJoinCommitScene function commits all changes for the specified scene
(scene argument). The scene commit internally triggers building of a spatial
acceleration structure for the scene. Ray queries can be performed after scene
changes got properly committed.

The rtcJoinCommitScene function can get called frommultiple user threads
which will all cooperate in the build operation. All threads calling into this
function will return from rtcJoinCommitScene after the scene commit is fin-
ished. All threads must consistently call rtcJoinCommitScene and not rtc-
CommitScene.

In contrast to the rtcCommitScene function, the rtcJoinCommitScene func-
tion can be called from multiple user threads, while the rtcCommitScene can
only get called from multiple TBB worker threads when used concurrently. For
optimal performance we strongly recommend using TBB inside the application
together with the rtcCommitScene function and to avoid using the rtcJoin-
CommitScene function.

The rtcJoinCommitScene feature allows a flexible way to lazily create hi-
erarchies during rendering. A thread reaching a not-yet-constructed sub-scene
of a two-level scene can generate the sub-scene geometry and call rtcJoinCom-
mitScene on that just generated scene. During construction, further threads
reaching the not-yet-built scene can join the build operation by also invoking
rtcJoinCommitScene. A thread that calls rtcJoinCommitScene after the build
finishes will directly return from the rtcJoinCommitScene call.

Multiple scene commit operations on different scenes can be running at the
same time, hence it is possible to commit many small scenes in parallel, distribut-
ing the commits to many threads.

When using Embree with the Intel® Threading Building Blocks (which is the
default), threads that call rtcJoinCommitScenewill join the build operation, but
other TBB worker threads might also participate in the build. To avoid thread
oversubscription, we recommend using TBB also inside the application. Further,
the join mode only works properly starting with TBB v4.4 Update 1. For ear-
lier TBB versions, threads that call rtcJoinCommitScene to join a running build
will just trigger the build and wait for the build to finish. Further, old TBB ver-
sions with TBB_INTERFACE_VERSION_MAJOR < 8 do not support rtcJoinCom-
mitScene, and invoking this function will result in an error.

When using Embree with the internal tasking system, only threads that
call rtcJoinCommitScene will perform the build operation, and no additional
worker threads will be scheduled.

When using Embree with the Parallel Patterns Library (PPL), rtcJoinCom-
mitScene is not supported and calling that function will result in an error.

To detect whether rtcJoinCommitScene is supported, use the rtcGetDevi-
ceProperty function.

Embree API Reference 62

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcCommitScene, rtcGetDeviceProperty

Embree API Reference 63

7.19 rtcSetSceneProgressMonitorFunction

NAME

rtcSetSceneProgressMonitorFunction - registers a callback
to track build progress

SYNOPSIS

#include <embree3/rtcore.h>

typedef bool (*RTCProgressMonitorFunction)(
void* ptr,
double n

);

void rtcSetSceneProgressMonitorFunction(
RTCScene scene,
RTCProgressMonitorFunction progress,
void* userPtr

);

DESCRIPTION

Embree supports a progress monitor callback mechanism that can be used to
report progress of hierarchy build operations and to cancel build operations.

The rtcSetSceneProgressMonitorFunction registers a progress monitor
callback function (progress argument) with payload (userPtr argument) for
the specified scene (scene argument).

Only a single callback function can be registered per scene, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function.

Once registered, Embree will invoke the callback function multiple times dur-
ing hierarchy build operations of the scene, by passing the payload as set at regis-
tration time (userPtr argument), and a double in the range [0, 1]which estimates
the progress of the operation (n argument). The callback functionmight be called
from multiple threads concurrently.

When returning true from the callback function, Embree will continue the
build operation normally. When returning false, Embree will cancel the build
operation with the RTC_ERROR_CANCELLED error code. Issuing multiple cancel
requests for the same build operation is allowed.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewScene

Embree API Reference 64

7.20 rtcSetSceneBuildQuality

NAME

rtcSetSceneBuildQuality - sets the build quality for
the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSceneBuildQuality(
RTCScene scene,
enum RTCBuildQuality quality

);

DESCRIPTION

The rtcSetSceneBuildQuality function sets the build quality (quality argu-
ment) for the specified scene (scene argument). Possible values for the build
quality are:

• RTC_BUILD_QUALITY_LOW: Create lower quality data structures, e.g. for
dynamic scenes. A two-level spatial index structure is built when enabling
this mode, which supports fast partial scene updates, and allows for setting
a per-geometry build quality through the rtcSetGeometryBuildQuality
function.

• RTC_BUILD_QUALITY_MEDIUM: Default build quality formost usages. Gives
a good compromise between build and render performance.

• RTC_BUILD_QUALITY_HIGH: Create higher quality data structures for final-
frame rendering. For certain geometry types this enables a spatial split
BVH.

Selecting a higher build quality results in better rendering performance but
slower scene commit times. The default build quality for a scene is RTC_BUILD_
QUALITY_MEDIUM.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryBuildQuality

Embree API Reference 65

7.21 rtcSetSceneFlags

NAME

rtcSetSceneFlags - sets the flags for the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSceneFlags(RTCScene scene, enum RTCSceneFlags flags);

DESCRIPTION

The rtcSetSceneFlags function sets the scene flags (flags argument) for the
specified scene (scene argument). Possible scene flags are:

• RTC_SCENE_FLAG_NONE: No flags set.

• RTC_SCENE_FLAG_DYNAMIC: Provides better build performance for dy-
namic scenes (but also higher memory consumption).

• RTC_SCENE_FLAG_COMPACT: Uses compact acceleration structures and avoids
algorithms that consume much memory.

• RTC_SCENE_FLAG_ROBUST: Uses acceleration structures that allow for ro-
bust traversal, and avoids optimizations that reduce arithmetic accuracy.
This mode is typically used for avoiding artifacts caused by rays shooting
through edges of neighboring primitives.

• RTC_SCENE_FLAG_CONTEXT_FILTER_FUNCTION: Enables support for a fil-
ter function inside the intersection context for this scene. See Section
rtcInitIntersectContext for more details.

Multiple flags can be enabled using an or operation, e.g. RTC_SCENE_FLAG_
COMPACT | RTC_SCENE_FLAG_ROBUST.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetSceneFlags

Embree API Reference 66

7.22 rtcGetSceneFlags

NAME

rtcGetSceneFlags - returns the flags of the scene

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCSceneFlags rtcGetSceneFlags(RTCScene scene);

DESCRIPTION

Queries the flags of a scene. This function can be useful when setting individual
flags, e.g. to just set the robust mode without changing other flags the following
way:

RTCSceneFlags flags = rtcGetSceneFlags(scene);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST | flags);

EXITSTATUS

On failure RTC_SCENE_FLAG_NONE is returned and an error code is set that can
be queried using rtcGetDeviceError.

SEEALSO

rtcSetSceneFlags

Embree API Reference 67

7.23 rtcGetSceneBounds

NAME

rtcGetSceneBounds - returns the axis-aligned bounding box of the scene

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCORE_ALIGN(16) RTCBounds
{
float lower_x, lower_y, lower_z, align0;
float upper_x, upper_y, upper_z, align1;

};

void rtcGetSceneBounds(
RTCScene scene,
struct RTCBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneBounds function queries the axis-aligned bounding box of the
specified scene (scene argument) and stores that bounding box to the provided
destination pointer (bounds_o argument). The stored bounding box consists
of lower and upper bounds for the x, y, and z dimensions as specified by the
RTCBounds structure.

The provided destination pointer must be aligned to 16 bytes. The function
may be invoked only after committing the scene; otherwise the result is unde-
fined.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetSceneLinearBounds, rtcCommitScene, rtcJoinCommitScene

Embree API Reference 68

7.24 rtcGetSceneLinearBounds

NAME

rtcGetSceneLinearBounds - returns the linear bounds of the scene

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCORE_ALIGN(16) RTCLinearBounds
{
RTCBounds bounds0;
RTCBounds bounds1;

};

void rtcGetSceneLinearBounds(
RTCScene scene,
struct RTCLinearBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneLinearBounds function queries the linear bounds of the speci-
fied scene (scene argument) and stores them to the provided destination pointer
(bounds_o argument). The stored linear bounds consist of bounding boxes for
time 0 (bounds0 member) and time 1 (bounds1 member) as specified by the RT-
CLinearBounds structure. Linearly interpolating these bounds to a specific time
t yields bounds for the geometry at that time.

The provided destination pointer must be aligned to 16 bytes. The function
may be called only after committing the scene, otherwise the result is undefined.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetSceneBounds, rtcCommitScene, rtcJoinCommitScene

Embree API Reference 69

7.25 rtcNewGeometry

NAME

rtcNewGeometry - creates a new geometry object

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCGeometryType
{
RTC_GEOMETRY_TYPE_TRIANGLE,
RTC_GEOMETRY_TYPE_QUAD,
RTC_GEOMETRY_TYPE_SUBDIVISION,
RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_GRID,
RTC_GEOMETRY_TYPE_SPHERE_POINT,
RTC_GEOMETRY_TYPE_DISC_POINT,
RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT,
RTC_GEOMETRY_TYPE_USER,
RTC_GEOMETRY_TYPE_INSTANCE
};

RTCGeometry rtcNewGeometry(
RTCDevice device,
enum RTCGeometryType type

);

DESCRIPTION

Geometries are objects that represent an array of primitives of the same type.
The rtcNewGeometry function creates a new geometry of specified type (type
argument) bound to the specified device (device argument) and returns a han-
dle to this geometry. The geometry object is reference counted with an initial
reference count of 1. The geometry handle can be released using the rtcRe-
leaseGeometry API call.

Supported geometry types are triangle meshes (RTC_GEOMETRY_TYPE_TRI-
ANGLE type), quad meshes (triangle pairs) (RTC_GEOMETRY_TYPE_QUAD type),
Catmull-Clark subdivision surfaces (RTC_GEOMETRY_TYPE_SUBDIVISION type),
curve geometries with different bases (RTC_GEOMETRY_TYPE_FLAT_LINEAR_
CURVE, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,

Embree API Reference 70

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_FLAT_HER-
MITE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_NOR-
MAL_ORIENTED_BEZIER_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_
CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE, RTC_GEOME-
TRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_CONE_
LINEAR_CURVE, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE, RTC_GEOMETRY_
TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, RTC_
GEOMETRY_TYPE_ROUND_HERMITE_CURVE, RTC_GEOMETRY_TYPE_ROUND_CATMULL_
ROM_CURVE types) grid meshes (RTC_GEOMETRY_TYPE_GRID), point geometries
(RTC_GEOMETRY_TYPE_SPHERE_POINT, RTC_GEOMETRY_TYPE_DISC_POINT, RTC_
TYPE_ORIENTED_DISC_POINT), user-defined geometries (RTC_GEOMETRY_TYPE_
USER), and instances (RTC_GEOMETRY_TYPE_INSTANCE).

The types RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_
ROUND_BSPLINE_CURVE, and RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE
will treat the curve as a sweep surface of a varying-radius circle swept tangen-
tially along the curve. The types RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, and RTC_GEOMETRY_TYPE_FLAT_
CATMULL_ROM_CURVE use ray-facing ribbons as a faster-to-intersect approxima-
tion.

After construction, geometries are enabled by default and not attached to
any scene. Geometries can be disabled (rtcDisableGeometry call), and enabled
again (rtcEnableGeometry call). A geometry can be attached to multiple scenes
using the rtcAttachGeometry call (or rtcAttachGeometryByID call), and de-
tached using the rtcDetachGeometry call. During attachment, a geometry ID is
assigned to the geometry (or assigned by the user when using the rtcAttach-
GeometryByID call), which uniquely identifies the geometry inside that scene.
This identifier is returned when primitives of the geometry are hit in later ray
queries for the scene.

Geometries can also be modified, including their vertex and index buffers.
After modifying a buffer, rtcUpdateGeometryBuffer must be called to notify
that the buffer got modified.

The application can use the rtcSetGeometryUserData function to set a user
data pointer to its own geometry representation, and later read out this pointer
using the rtcGetGeometryUserData function.

After setting up the geometry or modifying it, rtcCommitGeometrymust be
called to finish the geometry setup. After committing the geometry, vertex data
interpolation can be performed using the rtcInterpolate and rtcInterpo-
lateN functions.

A build quality can be specified for a geometry using the rtcSetGeometry-
BuildQuality function, to balance between acceleration structure build perfor-
mance and ray query performance. The build quality per geometry will be used if
a two-level acceleration structure is built internally, which is the case if the RTC_
BUILD_QUALITY_LOW is set as the scene build quality. See Section rtcSetSceneB-
uildQuality for more details.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcEnableGeometry, rtcDisableGeometry, rtcAttachGeometry, rtcAttachGeom-
etryByID, rtcUpdateGeometryBuffer, rtcSetGeometryUserData, rtcGetGeome-
tryUserData, rtcCommitGeometry, rtcInterpolate, rtcInterpolateN, rtcSetGeome-
tryBuildQuality, rtcSetSceneBuildQuality, RTC_GEOMETRY_TYPE_TRIANGLE,

Embree API Reference 71

RTC_GEOMETRY_TYPE_QUAD, RTC_GEOMETRY_TYPE_SUBDIVISION, RTC_GEOMETRY_TYPE_CURVE,
RTC_GEOMETRY_TYPE_GRID, RTC_GEOMETRY_TYPE_POINT, RTC_GEOMETRY_TYPE_USER,
RTC_GEOMETRY_TYPE_INSTANCE

Embree API Reference 72

7.26 RTC_GEOMETRY_TYPE_TRIANGLE

NAME

RTC_GEOMETRY_TYPE_TRIANGLE - triangle geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

DESCRIPTION

Triangle meshes are created by passing RTC_GEOMETRY_TYPE_TRIANGLE to the
rtcNewGeometry function call. The triangle indices can be specified by set-
ting an index buffer (RTC_BUFFER_TYPE_INDEX type) and the triangle vertices
by setting a vertex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeome-
tryBuffer and rtcSetSharedGeometryBuffer for more details on how to set
buffers. The index buffer must contain an array of three 32-bit indices per trian-
gle (RTC_FORMAT_UINT3 format) and the number of primitives is inferred from
the size of that buffer. The vertex buffer must contain an array of single precision
x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format), and the number
of vertices are inferred from the size of that buffer. The vertex buffer can be at
most 16 GB large.

The parametrization of a triangle uses the first vertex p0 as base point, the
vector p1 - p0 as u-direction and the vector p2 - p0 as v-direction. Thus vertex
attributes t0,t1,t2 can be linearly interpolated over the triangle the following
way:

t_uv = (1-u-v)*t0 + u*t1 + v*t2
= t0 + u*(t1-t0) + v*(t2-t0)

A triangle whose vertices are laid out counter-clockwise has its geometry
normal pointing upwards outside the front face, like illustrated in the following
picture:

Ng

p0

p2

p1

u

v

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for

Embree API Reference 73

each time step can be set using different buffer slots, and all these buffers have
to have the same stride and size.

Also see tutorial Triangle Geometry for an example of how to create triangle
meshes.

EXITSTATUS

On failure NULL is returned and an error code is set that be get queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry

Embree API Reference 74

7.27 RTC_GEOMETRY_TYPE_QUAD

NAME

RTC_GEOMETRY_TYPE_QUAD - quad geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_QUAD);

DESCRIPTION

Quad meshes are created by passing RTC_GEOMETRY_TYPE_QUAD to the rtcNew-
Geometry function call. The quad indices can be specified by setting an index
buffer (RTC_BUFFER_TYPE_INDEX type) and the quad vertices by setting a ver-
tex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The in-
dex buffer contains an array of four 32-bit indices per quad (RTC_FORMAT_UINT4
format), and the number of primitives is inferred from the size of that buffer. The
vertex buffer contains an array of single precision x, y, z floating point coordi-
nates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred from
the size of that buffer. The vertex buffer can be at most 16 GB large.

A quad is internally handled as a pair of two triangles v0,v1,v3 and v2,v3,v1,
with the u'/v' coordinates of the second triangle corrected by u = 1-u' and
v = 1-v' to produce a quad parametrization where u and v are in the range 0
to 1. Thus the parametrization of a quad uses the first vertex p0 as base point,
and the vector p1 - p0 as u-direction, and p3 - p0 as v-direction. Thus vertex
attributes t0,t1,t2,t3 can be bilinearly interpolated over the quadrilateral the
following way:

t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

Mixed triangle/quad meshes are supported by encoding a triangle as a quad,
which can be achieved by replicating the last triangle vertex (v0,v1,v2 ->
v0,v1,v2,v2). This way the second triangle is a line (which can never get
hit), and the parametrization of the first triangle is compatible with the standard
triangle parametrization.

A quad whose vertices are laid out counter-clockwise has its geometry nor-
mal pointing upwards outside the front face, like illustrated in the following pic-
ture.

Embree API Reference 75

Ng

p0

u

v

p3

p2

p1

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry

Embree API Reference 76

7.28 RTC_GEOMETRY_TYPE_GRID

NAME

RTC_GEOMETRY_TYPE_GRID - grid geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_GRID);

DESCRIPTION

Grid meshes are created by passing RTC_GEOMETRY_TYPE_GRID to the rtcNew-
Geometry function call, and contain an array of grid primitives. This array of
grids can be specified by setting up a grid buffer (with RTC_BUFFER_TYPE_GRID
type and RTC_FORMAT_GRID format) and the grid mesh vertices by setting a ver-
tex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer formore details on how to set buffers. The num-
ber of grid primitives in the grid mesh is inferred from the size of the grid buffer.

The vertex buffer contains an array of single precision x, y, z floating point
coordinates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred
from the size of that buffer.

Each grid in the grid buffer is of the type RTCGrid:

struct RTCGrid
{
unsigned int startVertexID;
unsigned int stride;
unsigned short width,height;

};

The RTCGrid structure describes a 2D grid of vertices (with respect to the
vertex buffer of the grid mesh). The width and height members specify the
number of vertices in u and v direction, e.g. setting both width and height to 3
sets up a 3×3 vertex grid. Themaximum allowed width and height is 32767. The
startVertexID specifies the ID of the top-left vertex in the vertex grid, while
the stride parameter specifies a stride (in number of vertices) used to step to
the next row.

A vertex grid of dimensions width and height is treated as a (width-1) x
(height-1) grid of quads (triangle-pairs), with the same shared edge handling
as for regular quadmeshes. However, the u/v coordinates have the uniform range
[0..1] for an entire vertex grid. The u direction follows the width of the grid
while the v direction the height.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry

Embree API Reference 77

7.29 RTC_GEOMETRY_TYPE_SUBDIVISION

NAME

RTC_GEOMETRY_TYPE_SUBDIVISION - subdivision geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SUBDIVISION);

DESCRIPTION

Catmull-Clark subdivision meshes are supported, including support for edge
creases, vertex creases, holes, non-manifold geometry, and face-varying inter-
polation. The number of vertices per face can be in the range of 3 to 15 vertices
(triangles, quadrilateral, pentagons, etc).

Subdivision meshes are created by passing RTC_GEOMETRY_TYPE_SUBDIVI-
SION to the rtcNewGeometry function. Various buffers need to be set by the
application to set up the subdivision mesh. See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The face
buffer (RTC_BUFFER_TYPE_FACE type and RTC_FORMAT_UINT format) contains
the number of edges/indices of each face (3 to 15), and the number of faces is
inferred from the size of this buffer. The index buffer (RTC_BUFFER_TYPE_IN-
DEX type) contains multiple (3 to 15) 32-bit vertex indices (RTC_FORMAT_UINT
format) for each face, and the number of edges is inferred from the size of this
buffer. The vertex buffer (RTC_BUFFER_TYPE_VERTEX type) stores an array of
single precision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format),
and the number of vertices is inferred from the size of this buffer.

Optionally, the application may set additional index buffers using different
buffer slots ifmultiple topologies are required for face-varying interpolation. The
standard vertex buffers (RTC_BUFFER_TYPE_VERTEX) are always bound to the ge-
ometry topology (topology 0) thus use RTC_BUFFER_TYPE_INDEXwith buffer slot
0. User vertex data interpolation may use different topologies as described later.

Optionally, the application can set up the hole buffer (RTC_BUFFER_TYPE_
HOLE) which contains an array of 32-bit indices (RTC_FORMAT_UINT format) of
faces that should be considered non-existing in all topologies. The number of
holes is inferred from the size of this buffer.

Optionally, the application can fill the level buffer (RTC_BUFFER_TYPE_LEVEL)
with a tessellation rate for each of the edges of each face. This buffer must have
the same size as the index buffer. The tessellation level is a positive floating
point value (RTC_FORMAT_FLOAT format) that specifies how many quads along
the edge should be generated during tessellation. If no level buffer is specified, a
level of 1 is used. The maximally supported edge level is 4096, and larger levels
are clamped to that value. Note that edges may be shared between (typically
2) faces. To guarantee a watertight tessellation, the level of these shared edges
should be identical. A uniform tessellation rate for an entire subdivision mesh
can be set by using the rtcSetGeometryTessellationRate function. The exis-
tence of a level buffer has precedence over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to make
edges appear sharper. The edge crease index buffer (RTC_BUFFER_TYPE_EDGE_
CREASE_INDEX) contains an array of pairs of 32-bit vertex indices (RTC_FOR-
MAT_UINT2 format) that specify unoriented edges in the geometry topology. The
edge crease weight buffer (RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT) stores for
each of these crease edges a positive floating point weight (RTC_FORMAT_FLOAT

Embree API Reference 78

format). The number of edge creases is inferred from the size of these buffers,
which has to be identical. The larger a weight, the sharper the edge. Specifying a
weight of infinity is supported and marks an edge as infinitely sharp. Storing an
edge multiple times with the same crease weight is allowed, but has lower per-
formance. Storing an edge multiple times with different crease weights results
in undefined behavior. For a stored edge (i,j), the reverse direction edges (j,i) do
not have to be stored, as both are considered the same unoriented edge. Edge
crease features are shared between all topologies.

Optionally, the application can fill the sparse vertex crease buffers to make
vertices appear sharper. The vertex crease index buffer (RTC_BUFFER_TYPE_
VERTEX_CREASE_INDEX), contains an array of 32-bit vertex indices (RTC_FOR-
MAT_UINT format) to specify a set of vertices from the geometry topology. The
vertex crease weight buffer (RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT) spec-
ifies for each of these vertices a positive floating point weight (RTC_FORMAT_
FLOAT format). The number of vertex creases is inferred from the size of these
buffers, and has to be identical. The larger a weight, the sharper the vertex. Spec-
ifying a weight of infinity is supported and makes the vertex infinitely sharp.
Storing a vertex multiple times with the same crease weight is allowed, but has
lower performance. Storing a vertex multiple times with different crease weights
results in undefined behavior. Vertex crease features are shared between all
topologies.

Subdivision modes can be used to force linear interpolation for parts of the
subdivision mesh; see rtcSetGeometrySubdivisionMode for more details.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers have
to have the same stride and size.

Also see tutorial Subdivision Geometry for an example of how to create sub-
division surfaces.

Parametrization

The parametrization for subdivision faces is different for quadrilaterals and non-
quadrilateral faces.

The parametrization of a quadrilateral face uses the first vertex p0 as base
point, and the vector p1 - p0 as u-direction and p3 - p0 as v-direction.

The parametrization for all other face types (with number of vertices not
equal 4), have a special parametrization where the subpatch ID n (of the n-th
quadrilateral that would be obtained by a single subdivision step) and the local
hit location inside this quadrilateral are encoded in the UV coordinates. The
following code extracts the sub-patch ID i and local UVs of this subpatch:
unsigned int l = floorf(0.5f*U);
unsigned int h = floorf(0.5f*V);
unsigned int i = 4*h+l;
float u = 2.0f*fracf(0.5f*U)-0.5f;
float v = 2.0f*fracf(0.5f*V)-0.5f;

This encoding allows local subpatch UVs to be in the range [-0.5,1.5[thus
negative subpatch UVs can be passed to rtcInterpolate to sample subpatches
slightly out of bounds. This can be useful to calculate derivatives using finite
differences if required. The encoding further has the property that one can just
move the value u (or v) on a subpatch by adding du (or dv) to the special UV
encoding as long as it does not fall out of the [-0.5,1.5[range.

To smoothly interpolate vertex attributes over the subdivision surface we
recommend using the rtcInterpolate function, which will apply the standard
subdivision rules for interpolation and automatically takes care of the special UV
encoding for non-quadrilaterals.

Embree API Reference 79

Face-VaryingData

Face-varying interpolation is supported through multiple topologies per subdi-
vision mesh and binding such topologies to vertex attribute buffers to interpo-
late. This way, texture coordinates may use a different topology with additional
boundaries to construct separate UV regions inside one subdivision mesh.

Each such topology i has a separate index buffer (specified using RTC_
BUFFER_TYPE_INDEX with buffer slot i) and separate subdivision mode that can
be set using rtcSetGeometrySubdivisionMode. A vertex attribute buffer RTC_
BUFFER_TYPE_VERTEX_ATTRIBUTE bound to a buffer slot j can be assigned to
use a topology for interpolation using the rtcSetGeometryVertexAttribute-
Topology call.

The face buffer (RTC_BUFFER_TYPE_FACE type) is shared between all topolo-
gies, whichmeans that the n-th primitive always has the same number of vertices
(e.g. being a triangle or a quad) for each topology. However, the indices of the
topologies themselves may be different.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry

Embree API Reference 80

7.30 RTC_GEOMETRY_TYPE_CURVE

NAME

RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE -
flat curve geometry with linear basis

RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE -
flat curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE -
flat curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE -
flat curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE -
flat curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE -
flat normal oriented curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE -
flat normal oriented curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE -
flat normal oriented curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE -
flat normal oriented curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE -
capped cone curve geometry with linear basis - discontinous at edge boundaries

RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE -
capped cone curve geometry with linear basis and spherical ending

RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE -
swept surface curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE -
swept surface curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE -
swept surface curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE -
swept surface curve geometry with Catmull-Rom basis

SYNOPSIS

#include <embree3/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE);

Embree API Reference 81

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE);

DESCRIPTION

Curves with per vertex radii are supported with linear, cubic Bézier, cubic B-
spline, and cubic Hermite bases. Such curve geometries are created by pass-
ing RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE, RTC_GEOMETRY_TYPE_FLAT_
BEZIER_CURVE, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_
TYPE_FLAT_HERMITE_CURVE, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BEZIER_CURVE, RTC_GEOMETRY_
TYPE_NORMAL_ORIENTED_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_NORMAL_
ORIENTED_FLAT_HERMITE_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_
CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE, RTC_GEOME-
TRY_TYPE_ROUND_LINEAR_CURVE, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_ROUND_HER-
MITE_CURVE, or RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE to the rtc-
NewGeometry function. The curve indices can be specified through an index
buffer (RTC_BUFFER_TYPE_INDEX) and the curve vertices through a vertex buffer
(RTC_BUFFER_TYPE_VERTEX). For theHermite basis a tangent buffer (RTC_BUFFER_
TYPE_TANGENT), normal oriented curves a normal buffer (RTC_BUFFER_TYPE_
NORMAL), and for normal oriented Hermite curves a normal derivative buffer
(RTC_BUFFER_TYPE_NORMAL_DERIVATIVE) has to get specified additionally. See
rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more details
on how to set buffers.

The index buffer contains an array of 32-bit indices (RTC_FORMAT_UINT for-
mat), each pointing to the first control vertex in the vertex buffer, but also to the
first tangent in the tangent buffer, and first normal in the normal buffer if these
buffers are present.

The vertex buffer stores each control vertex in the form of a single precision
position and radius stored in (x, y, z, r) order in memory (RTC_FORMAT_FLOAT4
format). The number of vertices is inferred from the size of this buffer. The radii
may be smaller than zero but the interpolated radii should always be greater or
equal to zero. Similarly, the tangent buffer stores the derivative of each control
vertex (x, y, z, r order and RTC_FORMAT_FLOAT4 format) and the normal buffer
stores a single precision normal per control vertex (x, y, z order and RTC_FOR-
MAT_FLOAT3 format).

Linear Basis For the linear basis the indices point to the first of 2 consecutive
control points in the vertex buffer. The first control point is the start and the
second control point the end of the line segment. When constructing hair strands
in this basis, the end-point can be shared with the start of the next line segment.

For the linear basis the user optionally can provide a flags buffer of type RTC_
BUFFER_TYPE_FLAGS which contains bytes that encode if the left neighbor seg-
ment (RTC_CURVE_FLAG_NEIGHBOR_LEFT flag) and/or right neighbor segment
(RTC_CURVE_FLAG_NEIGHBOR_RIGHT flags) exist (see RTCCurveFlags). If this
buffer is not set, than the left/right neighbor bits are automatically calculated

Embree API Reference 82

base on the index buffer (left segment exists if segment(id-1)+1 == segment(id)
and right segment exists if segment(id+1)-1 == segment(id)).

A left neighbor segment is assumed to end at the start vertex of the current
segement, and to start at the previous vertex in the vertex buffer. Similarly, the
right neighbor segment is assumed to start at the end vertex of the current seg-
ment, and to end at the next vertex in the vertex buffer.

Only when the left and right bits are properly specified the current segment
can properly attach to the left and/or right neighbor, otherwise the touching area
may not get rendererd properly.

Bézier Basis For the cubic Bézier basis the indices point to the first of 4 con-
secutive control points in the vertex buffer. These control points use the cubic
Bézier basis, where the first control point represents the start point of the curve,
and the 4th control point the end point of the curve. The Bézier basis is interpo-
lating, thus the curve does go exactly through the first and fourth control vertex.

B-spline Basis For the cubic B-spline basis the indices point to the first of 4
consecutive control points in the vertex buffer. These control points make up a
cardinal cubic B-spline (implicit equidistant knot vector). This basis is not inter-
polating, thus the curve does in general not go through any of the control points
directly. A big advantage of this basis is that 3 control points can be shared
for two continuous neighboring curve segments, e.g. the curves (p0,p1,p2,p3)
and (p1,p2,p3,p4) are C1 continuous. This feature make this basis a good choise
to construct continuous multi-segment curves, as memory consumption can be
kept minimal.

Hermite Basis For the cubic Hermite basis the indices point to the first of 2
consecutive points in the vertex buffer, and the first of 2 consecutive tangents
in the tangent buffer. These two points and two tangents make up a cubic Her-
mite curve. This basis is interpolating, thus does exactly go through the first
and second control point, and the first order derivative at the begin and end
matches exactly the value specified in the tangent buffer. When connecting two
segments continuously, the end point and tangent of the previous segment can
be shared. Different versions of Catmull-Rom splines can be easily constructed
usig the Hermite basis, by calculating a proper tangent buffer from the control
points.

Catmull-Rom Basis For the Catmull-Rom basis the indices point to the first
of 4 consecutive control points in the vertex buffer. This basis goes through p1
and p2, with tangents (p2-p0)/2 and (p3-p1)/2.

Flat Curves The RTC_GEOMETRY_TYPE_FLAT_* flat mode is a fast mode de-
signed to render distant hair. In this mode the curve is rendered as a connected
sequence of ray facing quads. Individual quads are considered to have subpixel
size, and zooming onto the curve might show geometric artifacts. The number
of quads to subdivide into can be specified through the rtcSetGeometryTes-
sellationRate function. By default the tessellation rate is 4.

NormalOrientedCurves The RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_*mode
is a mode designed to render blades of grass. In this mode a vertex spline has
to get specified as for the previous modes, but additionally a normal spline is
required. If the Hermite basis is used, the RTC_BUFFER_TYPE_NORMAL and RTC_
BUFFER_TYPE_NORMAL_DERIVATIVE buffers have both to be set.

The curve is rendered as a flat band whose center approximately follows the
provided vertex spline, whose half width approximately follows the provided

Embree API Reference 83

radius spline, and whose normal orientation approximately follows the provided
normal spline.

To intersect the normal oriented curve, we perform a newton-raphson style
intersection of a ray with a tensor product surface of a linear basis (perpendicular
to the curve) and cubic Bézier basis (along the curve). We use a guide curve and
its derivatives to construct the control points of that surface. The guide curve
is defined by a sweep surface defined by sweeping a line centered at the vertex
spline location along the curve. At each parameter value the half width of the
line matches the radius spline, and the direction matches the cross product of
the normal from the normal spline and tangent of the vertex spline. Note that
this construction does not work when the provided normals are parallel to the
curve direction. For this reason the provided normals should best be kept as
perpendicular to the curve direction as possible.

Round Curves In the RTC_GEOMETRY_TYPE_ROUND_* round mode, a real ge-
ometric surface is rendered for the curve, which is more expensive but allows
closeup views.

For the linear basis the round mode renders a cone that tangentially touches
a start-sphere and end-sphere. The start sphere is rendered when no previous
segments is indicated by the neighbor bits. The end sphere is always rendered
but parts that lie inside the next segment are clipped away (if that next segment
exists). This way a curve is closed on both ends and the interiour will render
properly as long as only neighboring segments penetrate into a segment. For
this to work properly it is important that the flags buffer is properly populated
with neighbor information.

For the cubic polynomial bases, the round mode renders a sweep surface by
sweeping a varying radius circle tangential along the curve. As a limitation, the
radius of the curve has to be smaller than the curvature radius of the curve at
each location on the curve.

The intersection with the curve segment stores the parametric hit location
along the curve segment as u-coordinate (range 0 to +1).

For flat curves, the v-coordinate is set to the normalized distance in the range
-1 to +1. For normal oriented curves the v-coordinate is in the range 0 to 1. For
the linear basis and in round mode the v-coordinate is set to zero.

In flat mode, the geometry normal Ng is set to the tangent of the curve at
the hit location. In round mode and for normal oriented curves, the geometry
normal Ng is set to the non-normalized geometric normal of the surface.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size. For the Hermite basis also a tangent buffer has to
be set for each time step and for normal oriented curves a normal buffer has to
get specified for each time step.

Also see tutorials Hair and Curves for examples of how to create and use
curve geometries.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry, RTCCurveFlags

Embree API Reference 84

7.31 RTC_GEOMETRY_TYPE_POINT

NAME

RTC_GEOMETRY_TYPE_SPHERE_POINT -
point geometry spheres

RTC_GEOMETRY_TYPE_DISC_POINT -
point geometry with ray-oriented discs

RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT -
point geometry with normal-oriented discs

SYNOPSIS

#include <embree3/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_DISC_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT);

DESCRIPTION

Points with per vertex radii are supported with sphere, ray-oriented discs, and
normal-oriented discs geometric representations. Such point geometries are
created by passing RTC_GEOMETRY_TYPE_SPHERE_POINT, RTC_GEOMETRY_TYPE_
DISC_POINT, or RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT to the rtcNew-
Geometry function. The point vertices can be specified t through a vertex buffer
(RTC_BUFFER_TYPE_VERTEX). For the normal oriented discs a normal buffer
(RTC_BUFFER_TYPE_NORMAL) has to get specified additionally. See rtcSetGe-
ometryBuffer and rtcSetSharedGeometryBuffer for more details on how to
set buffers.

The vertex buffer stores each control vertex in the form of a single precision
position and radius stored in (x, y, z, r) order in memory (RTC_FORMAT_FLOAT4
format). The number of vertices is inferred from the size of this buffer. Similarly,
the normal buffer stores a single precision normal per control vertex (x, y, z order
and RTC_FORMAT_FLOAT3 format).

In the RTC_GEOMETRY_TYPE_SPHERE_POINT mode, a real geometric surface
is rendered for the curve, which is more expensive but allows closeup views.

The RTC_GEOMETRY_TYPE_DISC_POINT flat mode is a fast mode designed to
render distant points. In this mode the point is rendered as a ray facing disc.

The RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINTmode is a mode designed
as a midpoint geometrically between ray facing discs and spheres. In this mode
the point is rendered as a normal oriented disc.

For all point types, only the hit distance and geometry normal is returned as
hit information, u and v are set to zero.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

Also see tutorial [Points] for an example of how to create and use point ge-
ometries.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

Embree API Reference 85

SEEALSO

rtcNewGeometry

Embree API Reference 86

7.32 RTC_GEOMETRY_TYPE_USER

NAME

RTC_GEOMETRY_TYPE_USER - user geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

DESCRIPTION

User-defined geometries contain a number of user-defined primitives, just like
triangle meshes contain multiple triangles. The shape of the user-defined primi-
tives is specified through registered callback functions, which enable extending
Embree with arbitrary types of primitives.

User-defined geometries are created by passing RTC_GEOMETRY_TYPE_USER
to the rtcNewGeometry function call. One has to set the number of prim-
itives (see rtcSetGeometryUserPrimitiveCount), a user data pointer (see
rtcSetGeometryUserData), a bounding function closure (see rtcSetGeome-
tryBoundsFunction), as well as user-defined intersect (see rtcSetGeometry-
IntersectFunction) and occluded (see rtcSetGeometryOccludedFunction)
callback functions. The bounding function is used to query the bounds of all
time steps of a user primitive, while the intersect and occluded callback func-
tions are called to intersect the primitive with a ray. The user data pointer is
passed to each callback invocation and can be used to point to the application’s
representation of the user geometry.

The creation of a user geometry typically looks the following:

RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
rtcSetGeometryUserData(geometry, userGeometryRepresentation);
rtcSetGeometryBoundsFunction(geometry, boundsFunction);
rtcSetGeometryIntersectFunction(geometry, intersectFunction);
rtcSetGeometryOccludedFunction(geometry, occludedFunction);

Please have a look at the rtcSetGeometryBoundsFunction, rtcSetGeom-
etryIntersectFunction, and rtcSetGeometryOccludedFunction functions
on the implementation of the callback functions.

Primitives of a user geometry are ignored during rendering when their
bounds are empty, thus bounds have lower>upper in at least one dimension.

See tutorial User Geometry for an example of how to use the user-defined
geometries.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcSetGeometryUserPrimitiveCount, rtcSetGeometryUserData,
rtcSetGeometryBoundsFunction, rtcSetGeometryIntersectFunction, rtcSetGeom-
etryOccludedFunction

Embree API Reference 87

7.33 RTC_GEOMETRY_TYPE_INSTANCE

NAME

RTC_GEOMETRY_TYPE_INSTANCE - instance geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE);

DESCRIPTION

Embree supports instancing of scenes using affine transformations (3×3 matrix
plus translation). As the instanced scene is stored only a single time, even if
instanced to multiple locations, this feature can be used to create very complex
scenes with small memory footprint.

Embree supports both single-level instancing andmulti-level instancing. The
maximum instance nesting depth is RTC_MAX_INSTANCE_LEVEL_COUNT; it can be
configured at compile-time using the constant EMBREE_MAX_INSTANCE_LEVEL_
COUNT. Users should adapt this constant to their needs: instances nested any
deeper are silently ignored in release mode, and cause assertions in debug mode.

Instances are created by passing RTC_GEOMETRY_TYPE_INSTANCE to the rtc-
NewGeometry function call. The instanced scene can be set using the rtcSet-
GeometryInstancedScene call, and the affine transformation can be set using
the rtcSetGeometryTransform function.

Please note that rtcCommitScene on the instanced scene should be called
first, followed by rtcCommitGeometry on the instance, followed by rtcCom-
mitScene for the top-level scene containing the instance.

If a ray hits the instance, the geomID and primID members of the hit are set
to the geometry ID and primitive ID of the hit primitive in the instanced scene,
and the instID member of the hit is set to the geometry ID of the instance in
the top-level scene.

The instancing scheme can also be implemented using user geometries. To
achieve this, the user geometry code should set the instIDmember of the inter-
section context to the geometry ID of the instance, then trace the transformed
ray, and finally set the instID field of the intersection context again to -1. The
instID field is copied automatically by each primitive intersector into the in-
stID field of the hit structure when the primitive is hit. See the User Geometry
tutorial for an example.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount function. Then a transforma-
tion for each time step can be specified using the rtcSetGeometryTransform
function.

See tutorials Instanced Geometry and Multi Level Instancing for examples of
how to use instances.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcSetGeometryInstancedScene, rtcSetGeometryTransform

Embree API Reference 88

7.34 RTCCurveFlags

NAME

RTCCurveFlags - per segment flags for curve geometry

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCCurveFlags { RTC_CURVE_FLAG_NEIGHBOR_LEFT = (1 << 0),
RTC_CURVE_FLAG_NEIGHBOR_RIGHT = (1 << 1) };

DESCRIPTION

The RTCCurveFlags type is used for linear curves to determine if the left and/or
right neighbor segment exist. Therefore one attaches a buffer of type RTC_BUFFER_TYPE_FLAGS
to the curve geometry which stores an individual byte per curve segment.

If the RTC_CURVE_FLAG_NEIGHBOR_LEFT flag in that byte is enabled for
a curve segment, then the left segment exists (which starts one vertex before the
start vertex of the current curve) and the current segment is rendered to properly
attach to that segment.

If the RTC_CURVE_FLAG_NEIGHBOR_RIGHT flag in that byte is enabled
for a curve segment, then the right segment exists (which ends one vertex af-
ter the end vertex of the current curve) and the current segment is rendered to
properly attach to that segment.

When not properly specifying left and right flags for linear curves, the ren-
dering at the ending of these curves may not look correct, in particular when
round linear curves are viewed from the inside.

EXITSTATUS

SEEALSO

RTC_GEOMETRY_TYPE_CURVE

Embree API Reference 89

7.35 rtcRetainGeometry

NAME

rtcRetainGeometry - increments the geometry reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcRetainGeometry function in-
crements the reference count of the passed geometry object (geometry argu-
ment). This function together with rtcReleaseGeometry allows to use the in-
ternal reference counting in a C++ wrapper class to handle the ownership of the
object.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcReleaseGeometry

Embree API Reference 90

7.36 rtcReleaseGeometry

NAME

rtcReleaseGeometry - decrements the geometry reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcReleaseGeometry function
decrements the reference count of the passed geometry object (geometry argu-
ment). When the reference count falls to 0, the geometry gets destroyed.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcRetainGeometry

Embree API Reference 91

7.37 rtcCommitGeometry

NAME

rtcCommitGeometry - commits geometry changes

SYNOPSIS

#include <embree3/rtcore.h>

void rtcCommitGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcCommitGeometry function is used to commit all geometry changes per-
formed to a geometry (geometry parameter). After a geometry gets modified,
this function must be called to properly update the internal state of the geometry
to perform interpolations using rtcInterpolate or to commit a scene contain-
ing the geometry using rtcCommitScene.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcInterpolate, rtcCommitScene

Embree API Reference 92

7.38 rtcEnableGeometry

NAME

rtcEnableGeometry - enables the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcEnableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcEnableGeometry function enables the specified geometry (geometry
argument). Only enabled geometries are rendered. Each geometry is enabled by
default at construction time.

After enabling a geometry, the scene containing that geometry must be com-
mitted using rtcCommitScene for the change to have effect.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcDisableGeometry, rtcCommitScene

Embree API Reference 93

7.39 rtcDisableGeometry

NAME

rtcDisableGeometry - disables the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcDisableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcDisableGeometry function disables the specified geometry (geometry
argument). A disabled geometry is not rendered. Each geometry is enabled by
default at construction time.

After disabling a geometry, the scene containing that geometry must be com-
mitted using rtcCommitScene for the change to have effect.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcEnableGeometry, rtcCommitScene

Embree API Reference 94

7.40 rtcSetGeometryTimeStepCount

NAME

rtcSetGeometryTimeStepCount - sets the number of time steps of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTimeStepCount(
RTCGeometry geometry,
unsigned int timeStepCount

);

DESCRIPTION

The rtcSetGeometryTimeStepCount function sets the number of time steps for
multi-segment motion blur (timeStepCount parameter) of the specified geome-
try (geometry parameter).

For triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes (RTC_
GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_TYPE_CURVE), points (RTC_GE-
OMETRY_TYPE_POINT), and subdivision geometries (RTC_GEOMETRY_TYPE_SUB-
DIVISION), the number of time steps directly corresponds to the number of ver-
tex buffer slots available (RTC_BUFFER_TYPE_VERTEX buffer type). For these ge-
ometries, one vertex buffer per time step must be specified when creating multi-
segment motion blur geometries.

For instance geometries (RTC_GEOMETRY_TYPE_INSTANCE), a transformation
must be specified for each time step (see rtcSetGeometryTransform).

For user geometries, the registered bounding callback function must provide
a bounding box per primitive and time step, and the intersection and occlusion
callback functions should properly intersect the motion-blurred geometry at the
ray time.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcSetGeometryTimeRange

Embree API Reference 95

7.41 rtcSetGeometryTimeRange

NAME

rtcSetGeometryTimeRange - sets the time range for a motion blur geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTimeRange(
RTCGeometry geometry,
float startTime,
float endTime

);

DESCRIPTION

The rtcSetGeometryTimeRange function sets a time range which defines the
start (and end time) of the first (and last) time step of a motion blur geometry.
The time range is defined relative to the camera shutter interval [0,1] but it can
be arbitrary. Thus the startTime can be smaller, equal, or larger 0, indicating a
geometry whose animation definition start before, at, or after the camera shutter
opens. Similar the endTime can be smaller, equal, or larger than 1, indicating a
geometry whose animation definition ends after, at, or before the camera shutter
closes. The startTime has to be smaller or equal to the endTime.

The default time range when this function is not called is the entire camera
shutter [0,1]. For best performance at most one time segment of the piece wise
linear definition of the motion should fall outside the shutter window to the left
and to the right. Thus do not set the startTime or endTime too far outside the
[0,1] interval for best performance.

This time range feature will also allow geometries to appear and disappear
during the camera shutter time if the specified time range is a sub range of [0,1].

Please also have a look at the rtcSetGeometryTimeStepCount function to
see how to define the time steps for the specified time range.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryTimeStepCount

Embree API Reference 96

7.42 rtcSetGeometryVertexAttributeCount

NAME

rtcSetGeometryVertexAttributeCount - sets the number of vertex
attributes of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryVertexAttributeCount(
RTCGeometry geometry,
unsigned int vertexAttributeCount

);

DESCRIPTION

The rtcSetGeometryVertexAttributeCount function sets the number of slots
(vertexAttributeCount parameter) for vertex attribute buffers (RTC_BUFFER_
TYPE_VERTEX_ATTRIBUTE) that can be used for the specified geometry (geome-
try parameter).

This function is supported only for triangle meshes (RTC_GEOMETRY_TYPE_
TRIANGLE), quad meshes (RTC_GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_
TYPE_CURVE), points (RTC_GEOMETRY_TYPE_POINT), and subdivision geometries
(RTC_GEOMETRY_TYPE_SUBDIVISION).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, RTCBufferType

Embree API Reference 97

7.43 rtcSetGeometryMask

NAME

rtcSetGeometryMask - sets the geometry mask

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryMask(
RTCGeometry geometry,
unsigned int mask

);

DESCRIPTION

The rtcSetGeometryMask function sets a 32-bit geometry mask (mask argu-
ment) for the specified geometry (geometry argument).

This geometry mask is used together with the ray mask stored inside the
mask field of the ray. The primitives of the geometry are hit by the ray only if
the bitwise and operation of the geometry mask with the ray mask is not 0. This
feature can be used to disable selected geometries for specifically tagged rays,
e.g. to disable shadow casting for certain geometries.

Ray masks are disabled in Embree by default at compile time, and can be
enabled through the EMBREE_RAY_MASK parameter in CMake. One can query
whether ray masks are enabled by querying the RTC_DEVICE_PROPERTY_RAY_
MASK_SUPPORTED device property using rtcGetDeviceProperty.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTCRay, rtcGetDeviceProperty

Embree API Reference 98

7.44 rtcSetGeometryBuildQuality

NAME

rtcSetGeometryBuildQuality - sets the build quality for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryBuildQuality(
RTCGeometry geometry,
enum RTCBuildQuality quality

);

DESCRIPTION

The rtcSetGeometryBuildQuality function sets the build quality (quality ar-
gument) for the specified geometry (geometry argument). The per-geometry
build quality is only a hint and may be ignored. Embree currently uses the per-
geometry build quality when the scene build quality is set to RTC_BUILD_QUAL-
ITY_LOW. In this mode a two-level acceleration structure is build, and geometries
build a separate acceleration structure using the geometry build quality. The
per-geometry build quality can be one of:

• RTC_BUILD_QUALITY_LOW: Creates lower quality data structures, e.g. for
dynamic scenes.

• RTC_BUILD_QUALITY_MEDIUM: Default build quality formost usages. Gives
a good compromise between build and render performance.

• RTC_BUILD_QUALITY_HIGH: Creates higher quality data structures for
final-frame rendering. Enables a spatial split builder for certain primitive
types.

• RTC_BUILD_QUALITY_REFIT: Uses a BVH refitting approach when chang-
ing only the vertex buffer.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetSceneBuildQuality

Embree API Reference 99

7.45 rtcSetGeometryBuffer

NAME

rtcSetGeometryBuffer - assigns a view of a buffer to the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
RTCBuffer buffer,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetGeometryBuffer function binds a view of a buffer object (buffer
argument) to a geometry buffer type and slot (type and slot argument) of the
specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset
argument), the byte stride between individual buffer elements (byteStride ar-
gument), the format of the buffer elements (format argument), and the number
of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argument)
must be both aligned to 4 bytes, otherwise the rtcSetGeometryBuffer function
will fail.

After successful completion of this function, the geometry will hold a refer-
ence to the buffer object.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference 100

7.46 rtcSetSharedGeometryBuffer

NAME

rtcSetSharedGeometryBuffer - assigns a view of a shared data buffer
to a geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSharedGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
const void* ptr,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetSharedGeometryBuffer function binds a view of a shared user-
managed data buffer (ptr argument) to a geometry buffer type and slot (type
and slot argument) of the specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset
argument), the byte stride between individual buffer elements (byteStride ar-
gument), the format of the buffer elements (format argument), and the number
of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argument)
must be both aligned to 4 bytes; otherwise the rtcSetGeometryBuffer function
will fail.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VER-
TEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must
be readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

The buffer data must remain valid for as long as the buffer may be used, and
the user is responsible for freeing the buffer data when no longer required.

Sharing buffers can significantly reduce the memory required by the applica-
tion, thus we recommend using this feature. When enabling the RTC_SCENE_
FLAG_COMPACT scene flag, the spatial index structures index into the vertex
buffer, resulting in even higher memory savings.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference 101

7.47 rtcSetNewGeometryBuffer

NAME

rtcSetNewGeometryBuffer - creates and assigns a new data buffer to
the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcSetNewGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetNewGeometryBuffer function creates a new data buffer of specified
format (format argument), byte stride (byteStride argument), and number of
items (itemCount argument), and assigns it to a geometry buffer slot (type and
slot argument) of the specified geometry (geometry argument). The buffer data
is managed internally and automatically freed when the geometry is destroyed.

The byte stride (byteStride argument) must be aligned to 4 bytes; otherwise
the rtcSetNewGeometryBuffer function will fail.

The allocated buffer will be automatically over-allocated slightly when used
as a vertex buffer, where a requirement is that each buffer element should be
readable using 16-byte SSE load instructions.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer

Embree API Reference 102

7.48 RTCFormat

NAME

RTCFormat - specifies format of data in buffers

SYNOPSIS

#include <embree3/rtcore_ray.h>

enum RTCFormat
{
RTC_FORMAT_UINT,
RTC_FORMAT_UINT2,
RTC_FORMAT_UINT3,
RTC_FORMAT_UINT4,

RTC_FORMAT_FLOAT,
RTC_FORMAT_FLOAT2,
RTC_FORMAT_FLOAT3,
RTC_FORMAT_FLOAT4,
RTC_FORMAT_FLOAT5,
RTC_FORMAT_FLOAT6,
RTC_FORMAT_FLOAT7,
RTC_FORMAT_FLOAT8,
RTC_FORMAT_FLOAT9,
RTC_FORMAT_FLOAT10,
RTC_FORMAT_FLOAT11,
RTC_FORMAT_FLOAT12,
RTC_FORMAT_FLOAT13,
RTC_FORMAT_FLOAT14,
RTC_FORMAT_FLOAT15,
RTC_FORMAT_FLOAT16,

RTC_FORMAT_FLOAT3X4_ROW_MAJOR,
RTC_FORMAT_FLOAT4X4_ROW_MAJOR,

RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,
RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,

RTC_FORMAT_GRID,

};

DESCRIPTION

The RTFormat structure defines the data format stored in data buffers provided
to Embree using the rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, and
rtcSetNewGeometryBuffer API calls.

The RTC_FORMAT_UINT/2/3/4 format are used to specify that data buffers
store unsigned integers, or unsigned integer vectors of size 2,3 or 4. This format
has typically to get used when specifying index buffers, e.g. RTC_FORMAT_UINT3
for triangle meshes.

The RTC_FORMAT_FLOAT/2/3/4... format are used to specify that data
buffers store single precision floating point values, or vectors there of (size 2,3,4,
etc.). This format is typcally used to specify to format of vertex buffers, e.g. the
RTC_FORMAT_FLOAT3 type for vertex buffers of triangle meshes.

Embree API Reference 103

The RTC_FORMAT_FLOAT3X4_ROW_MAJOR and RTC_FORMAT_FLOAT3X4_COL-
UMN_MAJOR formats, specify a 3x4 floating point matrix layed out either row ma-
jor or columnmajor. The RTC_FORMAT_FLOAT4X4_ROW_MAJOR and RTC_FORMAT_
FLOAT4X4_COLUMN_MAJOR formats, specify a 4x4 floating point matrix layed out
either row major or column major. These matrix formats are used in the rtcSet-
GeometryTransform function in order to set a transformation matrix for geome-
tries.

The RTC_FORMAT_GRID is a special data format used to specify grid primitives
of layout RTCGridwhen creating grid geometries (see RTC_GEOMETRY_TYPE_GRID).

EXITSTATUS

SEEALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer,
rtcSetGeometryTransform

Embree API Reference 104

7.49 RTCBufferType

NAME

RTCFormat - specifies format of data in buffers

SYNOPSIS

#include <embree3/rtcore_ray.h>

enum RTCBufferType
{
RTC_BUFFER_TYPE_INDEX = 0,
RTC_BUFFER_TYPE_VERTEX = 1,
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE = 2,
RTC_BUFFER_TYPE_NORMAL = 3,
RTC_BUFFER_TYPE_TANGENT = 4,
RTC_BUFFER_TYPE_NORMAL_DERIVATIVE = 5,

RTC_BUFFER_TYPE_GRID = 8,

RTC_BUFFER_TYPE_FACE = 16,
RTC_BUFFER_TYPE_LEVEL = 17,
RTC_BUFFER_TYPE_EDGE_CREASE_INDEX = 18,
RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT = 19,
RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX = 20,
RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT = 21,
RTC_BUFFER_TYPE_HOLE = 22,

RTC_BUFFER_TYPE_FLAGS = 32
};

DESCRIPTION

The RTBufferType structure defines slots to assign data buffers to using the
rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, and rtcSetNewGeometry-
Buffer API calls.

For most geometry types the RTC_BUFFER_TYPE_INDEX slot is used to assign
an index buffer, while the RTC_BUFFER_TYPE_VERTEX is used to assign the cor-
responding vertex buffer.

The RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE slot can get used to assign arbi-
trary additional vertex data which can get interpolated using the rtcInterpolate
API call.

The RTC_BUFFER_TYPE_NORMAL, RTC_BUFFER_TYPE_TANGENT, and RTC_BUFFER_
TYPE_NORMAL_DERIVATIVE are special buffers required to assign per vertex nor-
mals, tangents, and normal derivatives for some curve types.

The RTC_BUFFER_TYPE_GRID buffer is used to assign the grid primitive buffer
for grid geometries (see RTC_GEOMETRY_TYPE_GRID).

The RTC_BUFFER_TYPE_FACE, RTC_BUFFER_TYPE_LEVEL, RTC_BUFFER_TYPE_
EDGE_CREASE_INDEX, RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT, RTC_BUFFER_
TYPE_VERTEX_CREASE_INDEX, RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, and
RTC_BUFFER_TYPE_HOLE are special buffers required to create subdivisionmeshes
(see RTC_GEOMETRY_TYPE_SUBDIVISION).

The RTC_BUFFER_TYPE_FLAGS can get used to add additional flag per primi-
tive of a geometry, and is currently only used for linear curves.

Embree API Reference 105

EXITSTATUS

SEEALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference 106

7.50 rtcGetGeometryBufferData

NAME

rtcGetGeometryBufferData - gets pointer to
the first buffer view element

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetGeometryBufferData(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcGetGeometryBufferData function returns a pointer to the first element
of the buffer view attached to the specified buffer type and slot (type and slot
argument) of the geometry (geometry argument).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference 107

7.51 rtcUpdateGeometryBuffer

NAME

rtcUpdateGeometryBuffer - marks a buffer view bound to the geometry
as modified

SYNOPSIS

#include <embree3/rtcore.h>

void rtcUpdateGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcUpdateGeometryBuffer function marks the buffer view bound to the
specified buffer type and slot (type and slot argument) of a geometry (geome-
try argument) as modified.

If a data buffer is changed by the application, the rtcUpdateGeometry-
Buffer call must be invoked for that buffer. Each buffer view assigned to a
buffer slot is initially marked as modified, thus this function needs to be called
only when doing buffer modifications after the first rtcCommitScene.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcCommitScene

Embree API Reference 108

7.52 rtcSetGeometryIntersectFilterFunction

NAME

rtcSetGeometryIntersectFilterFunction - sets the intersection filter
for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCFilterFunctionNArguments
{
int* valid;
void* geometryUserPtr;
const struct RTCIntersectContext* context;
struct RTCRayN* ray;
struct RTCHitN* hit;
unsigned int N;

};

typedef void (*RTCFilterFunctionN)(
const struct RTCFilterFunctionNArguments* args

);

void rtcSetGeometryIntersectFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

);

DESCRIPTION

The rtcSetGeometryIntersectFilterFunction function registers an inter-
section filter callback function (filter argument) for the specified geometry
(geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encoun-
tered during the rtcIntersect-type ray queries and can accept or reject that
hit. The feature can be used to define a silhouette for a primitive and reject hits
that are outside the silhouette. E.g. a tree leaf could be modeled with an alpha
texture that decides whether hit points lie inside or outside the leaf.

If the RTC_BUILD_QUALITY_HIGH mode is set, the filter functions may be
called multiple times for the same primitive hit. Further, rays hitting exactly
the edge might also report two hits for the same surface. For certain use cases,
the application may have to work around this limitation by collecting already
reported hits (geomID/primID pairs) and ignoring duplicates.

The filter function callback of type RTCFilterFunctionN gets passed a num-
ber of arguments through the RTCFilterFunctionNArguments structure. The
valid parameter of that structure points to an integer valid mask (0 means in-
valid and -1 means valid). The geometryUserPtr member is a user pointer op-
tionally set per geometry through the rtcSetGeometryUserData function. The
contextmember points to the intersection context passed to the ray query func-
tion. The ray parameter points to N rays in SOA layout. The hit parameter
points to N hits in SOA layout to test. The N parameter is the number of rays and
hits in ray and hit. The hit distance is provided as the tfar value of the ray. If

Embree API Reference 109

the hit geometry is instanced, the instIDmember of the ray is valid, and the ray
and the potential hit are in object space.

The filter callback function has the task to check for each valid ray whether it
wants to accept or reject the corresponding hit. To reject a hit, the filter callback
function just has to write 0 to the integer valid mask of the corresponding ray.
To accept the hit, it just has to leave the valid mask set to -1. The filter function
is further allowed to change the hit and decrease the tfar value of the ray but it
should not modify other ray data nor any inactive components of the ray or hit.

When performing ray queries using rtcIntersect1, it is guaranteed that the
packet size is 1 when the callback is invoked. When performing ray queries using
the rtcIntersect4/8/16 functions, it is not generally guaranteed that the ray
packet size (and order of rays inside the packet) passed to the callback matches
the initial ray packet. However, under some circumstances these properties are
guaranteed, and whether this is the case can be queried using rtcGetDevice-
Property. When performing ray queries using the stream API such as rtcIn-
tersect1M, rtcIntersect1Mp, rtcIntersectNM, or rtcIntersectNp the or-
der of rays and ray packet size of the callback function might change to either 1,
4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

The implementation of the filter function can choose to implement a single
code path that uses the ray access helper functions RTCRay_XXX and hit access
helper functions RTCHit_XXX to access ray and hit data. Alternatively the code
can branch to optimized implementations for specific sizes of N and cast the ray
and hit inputs to the proper packet types.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryOccludedFilterFunction

Embree API Reference 110

7.53 rtcSetGeometryOccludedFilterFunction

NAME

rtcSetGeometryOccludedFilterFunction - sets the occlusion filter
for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryOccludedFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

);

DESCRIPTION

The rtcSetGeometryOccludedFilterFunction function registers an occlu-
sion filter callback function (filter argument) for the specified geometry (ge-
ometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encoun-
tered during the rtcOccluded-type ray queries and can accept or reject that hit.
The feature can be used to define a silhouette for a primitive and reject hits that
are outside the silhouette. E.g. a tree leaf could be modeled with an alpha texture
that decides whether hit points lie inside or outside the leaf.

Please see the description of the rtcSetGeometryIntersectFilterFunc-
tion for a description of the filter callback function.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryIntersectFilterFunction

Embree API Reference 111

7.54 rtcFilterIntersection

NAME

rtcFilterIntersection - invokes the intersection filter function

SYNOPSIS

#include <embree3/rtcore.h>

void rtcFilterIntersection(
const struct RTCIntersectFunctionNArguments* args,
const struct RTCFilterFunctionNArguments* filterArgs

);

DESCRIPTION

The rtcFilterIntersection function can be called inside an RTCIntersect-
FunctionN callback function to invoke the intersection filter registered to the
geometry and stored inside the context. For this an RTCFilterFunctionNArgu-
ments structure must be created (see rtcSetGeometryIntersectFilterFunc-
tion) which basically consists of a valid mask, a hit packet to filter, the corre-
sponding ray packet, and the packet size. After the invocation of rtcFilterIn-
tersection, only rays that are still valid (valid mask set to -1) should update a
hit.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcFilterOcclusion, rtcSetGeometryIntersectFunction

Embree API Reference 112

7.55 rtcFilterOcclusion

NAME

rtcFilterOcclusion - invokes the occlusion filter function

SYNOPSIS

#include <embree3/rtcore.h>

void rtcFilterOcclusion(
const struct RTCOccludedFunctionNArguments* args,
const struct RTCFilterFunctionNArguments* filterArgs

);

DESCRIPTION

The rtcFilterOcclusion function can be called inside an RTCOccludedFunc-
tionN callback function to invoke the occlusion filter registered to the geometry
and stored inside the context. For this an RTCFilterFunctionNArguments struc-
ture must be created (see rtcSetGeometryIntersectFilterFunction) which
basically consists of a valid mask, a hit packet to filter, the corresponding ray
packet, and the packet size. After the invocation of rtcFilterOcclusion only
rays that are still valid (valid mask set to -1) should signal an occlusion.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcFilterIntersection, rtcSetGeometryOccludedFunction

Embree API Reference 113

7.56 rtcSetGeometryUserData

NAME

rtcSetGeometryUserData - sets the user-defined data pointer of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryUserData(RTCGeometry geometry, void* userPtr);

DESCRIPTION

The rtcSetGeometryUserData function sets the user-defined data pointer (userPtr
argument) for a geometry (geometry argument). This user data pointer is in-
tended to be pointing to the application’s representation of the geometry, and is
passed to various callback functions. The application can use this pointer inside
the callback functions to access its geometry representation.

The rtcGetGeometryUserData function can be used to query an already set
user data pointer of a geometry.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetGeometryUserData

Embree API Reference 114

7.57 rtcGetGeometryUserData

NAME

rtcGetGeometryUserData - returns the user data pointer
of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetGeometryUserData(RTCGeometry geometry);

DESCRIPTION

The rtcGetGeometryUserData function queries the user data pointer previ-
ously set with rtcSetGeometryUserData. When rtcSetGeometryUserData
was not called yet, NULL is returned.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryUserData

Embree API Reference 115

7.58 rtcSetGeometryUserPrimitiveCount

NAME

rtcSetGeometryUserPrimitiveCount - sets the number of primitives
of a user-defined geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryUserPrimitiveCount(
RTCGeometry geometry,
unsigned int userPrimitiveCount

);

DESCRIPTION

The rtcSetGeometryUserPrimitiveCount function sets the number of user-
defined primitives (userPrimitiveCount parameter) of the specified user-defined
geometry (geometry parameter).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_USER

Embree API Reference 116

7.59 rtcSetGeometryBoundsFunction

NAME

rtcSetGeometryBoundsFunction - sets a callback to query the
bounding box of user-defined primitives

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCBoundsFunctionArguments
{
void* geometryUserPtr;
unsigned int primID;
unsigned int timeStep;
struct RTCBounds* bounds_o;

};

typedef void (*RTCBoundsFunction)(
const struct RTCBoundsFunctionArguments* args

);

void rtcSetGeometryBoundsFunction(
RTCGeometry geometry,
RTCBoundsFunction bounds,
void* userPtr

);

DESCRIPTION

The rtcSetGeometryBoundsFunction function registers a bounding box call-
back function (bounds argument) with payload (userPtr argument) for the spec-
ified user geometry (geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered bounding box callback function is invoked to calculate axis-
aligned bounding boxes of the primitives of the user-defined geometry dur-
ing spatial acceleration structure construction. The bounding box callback of
RTCBoundsFunction type is invokedwith a pointer to a structure of type RTCBounds-
FunctionArguments which contains various arguments, such as: the user data
of the geometry (geometryUserPtrmember), the ID of the primitive to calculate
the bounds for (primIDmember), the time step at which to calculate the bounds
(timeStep member), and a memory location to write the calculated bound to
(bounds_o member).

In a typical usage scenario one would store a pointer to the internal repre-
sentation of the user geometry object using rtcSetGeometryUserData. The
callback function can then read that pointer from the geometryUserPtr field
and calculate the proper bounding box for the requested primitive and time, and
store that bounding box to the destination structure (bounds_o member).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

Embree API Reference 117

SEEALSO

RTC_GEOMETRY_TYPE_USER

Embree API Reference 118

7.60 rtcSetGeometryIntersectFunction

NAME

rtcSetGeometryIntersectFunction - sets the callback function to
intersect a user geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCIntersectFunctionNArguments
{
int* valid;
void* geometryUserPtr;
unsigned int primID;
struct RTCIntersectContext* context;
struct RTCRayHitN* rayhit;
unsigned int N;
unsigned int geomID;

};

typedef void (*RTCIntersectFunctionN)(
const struct RTCIntersectFunctionNArguments* args

);

void rtcSetGeometryIntersectFunction(
RTCGeometry geometry,
RTCIntersectFunctionN intersect

);

DESCRIPTION

The rtcSetGeometryIntersectFunction function registers a ray/primitive in-
tersection callback function (intersect argument) for the specified user geom-
etry (geometry argument).

Only a single callback function can be registered per geometry and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered callback function is invoked by rtcIntersect-type ray queries
to calculate the intersection of a ray packet of variable size with one user-defined
primitive. The callback function of type RTCIntersectFunctionN gets passed
a number of arguments through the RTCIntersectFunctionNArguments struc-
ture. The value N specifies the ray packet size, valid points to an array of
integers that specify whether the corresponding ray is valid (-1) or invalid (0),
the geometryUserPtr member points to the geometry user data previously set
through rtcSetGeometryUserData, the context member points to the inter-
section context passed to the ray query, the rayhit member points to a ray and
hit packet of variable size N, and the geomID and primID member identifies the
geometry ID and primitive ID of the primitive to intersect.

The ray component of the rayhit structure contains valid data, in particular
the tfar value is the current closest hit distance found. All data inside the hit
component of the rayhit structure are undefined and should not be read by the
function.

The task of the callback function is to intersect each active ray from the ray
packet with the specified user primitive. If the user-defined primitive is missed
by a ray of the ray packet, the function should return without modifying the ray

Embree API Reference 119

or hit. If an intersection of the user-defined primitive with the ray was found
in the valid range (from tnear to tfar), it should update the hit distance of the
ray (tfar member) and the hit (u, v, Ng, instID, geomID, primID members). In
particular, the currently intersected instance is stored in the instID field of the
intersection context, which must be deep copied into the instID member of the
hit.

As a primitive might have multiple intersections with a ray, the intersection
filter function needs to be invoked by the user geometry intersection callback for
each encountered intersection, if filtering of intersections is desired. This can be
achieved through the rtcFilterIntersection call.

Within the user geometry intersect function, it is safe to trace new rays and
create new scenes and geometries.

When performing ray queries using rtcIntersect1, it is guaranteed that the
packet size is 1 when the callback is invoked. When performing ray queries using
the rtcIntersect4/8/16 functions, it is not generally guaranteed that the ray
packet size (and order of rays inside the packet) passed to the callback matches
the initial ray packet. However, under some circumstances these properties are
guaranteed, and whether this is the case can be queried using rtcGetDevice-
Property. When performing ray queries using the stream API such as rtcIn-
tersect1M, rtcIntersect1Mp, rtcIntersectNM, or rtcIntersectNp the or-
der of rays and ray packet size of the callback function might change to either 1,
4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryOccludedFunction, rtcSetGeometryUserData, rtcFilterIntersec-
tion

Embree API Reference 120

7.61 rtcSetGeometryOccludedFunction

NAME

rtcSetGeometryOccludedFunction - sets the callback function to
test a user geometry for occlusion

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCOccludedFunctionNArguments
{
int* valid;
void* geometryUserPtr;
unsigned int primID;
struct RTCIntersectContext* context;
struct RTCRayN* ray;
unsigned int N;
unsigned int geomID;

};

typedef void (*RTCOccludedFunctionN)(
const struct RTCOccludedFunctionNArguments* args

);

void rtcSetGeometryOccludedFunction(
RTCGeometry geometry,
RTCOccludedFunctionN filter

);

DESCRIPTION

The rtcSetGeometryOccludedFunction function registers a ray/primitive oc-
clusion callback function (filter argument) for the specified user geometry
(geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered callback function is invoked by rtcOccluded-type ray queries
to test whether the rays of a packet of variable size are occluded by a user-defined
primitive. The callback function of type RTCOccludedFunctionN gets passed
a number of arguments through the RTCOccludedFunctionNArguments struc-
ture. The value N specifies the ray packet size, valid points to an array of in-
tegers which specify whether the corresponding ray is valid (-1) or invalid (0),
the geometryUserPtr member points to the geometry user data previously set
through rtcSetGeometryUserData, the contextmember points to the intersec-
tion context passed to the ray query, the ray member points to a ray packet of
variable size N, and the geomID and primID member identifies the geometry ID
and primitive ID of the primitive to intersect.

The task of the callback function is to intersect each active ray from the ray
packet with the specified user primitive. If the user-defined primitive is missed
by a ray of the ray packet, the function should return without modifying the ray.
If an intersection of the user-defined primitive with the ray was found in the
valid range (from tnear to tfar), it should set the tfar member of the ray to
-inf.

Embree API Reference 121

As a primitive might have multiple intersections with a ray, the occlusion
filter function needs to be invoked by the user geometry occlusion callback for
each encountered intersection, if filtering of intersections is desired. This can be
achieved through the rtcFilterOcclusion call.

Within the user geometry occlusion function, it is safe to trace new rays and
create new scenes and geometries.

When performing ray queries using rtcOccluded1, it is guaranteed that the
packet size is 1 when the callback is invoked. When performing ray queries us-
ing the rtcOccluded4/8/16 functions, it is not generally guaranteed that the ray
packet size (and order of rays inside the packet) passed to the callback matches
the initial ray packet. However, under some circumstances these properties are
guaranteed, and whether this is the case can be queried using rtcGetDevice-
Property. When performing ray queries using the stream API such as rtcOc-
cluded1M, rtcOccluded1Mp, rtcOccludedNM, or rtcOccludedNp the order of
rays and ray packet size of the callback function might change to either 1, 4, 8,
or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometryIntersectFunction, rtcSetGeometryUserData, rtcFilterOcclusion

Embree API Reference 122

7.62 rtcSetGeometryPointQueryFunction

NAME

rtcSetGeometryPointQueryFunction - sets the point query callback function
for a geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCPointQueryFunctionArguments
{
// the (world space) query object that was passed as an argument of rtcPointQuery.
struct RTCPointQuery* query;

// used for user input/output data. Will not be read or modified internally.
void* userPtr;

// primitive and geometry ID of primitive
unsigned int primID;
unsigned int geomID;

// the context with transformation and instance ID stack
struct RTCPointQueryContext* context;

// scaling factor indicating whether the current instance transformation
// is a similarity transformation.
float similarityScale;

};

typedef bool (*RTCPointQueryFunction)(
struct RTCPointQueryFunctionArguments* args

);

void rtcSetGeometryPointQueryFunction(
RTCGeometry geometry,
RTCPointQueryFunction queryFunc

);

DESCRIPTION

The rtcSetGeometryPointQueryFunction function registers a point query
callback function (queryFunc argument) for the specified geometry (geometry
argument).

Only a single callback function can be registered per geometry and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered callback function is invoked by rtcPointQuery for every prim-
itive of the geometry that intersects the corresponding point query domain. The
callback function of type RTCPointQueryFunction gets passed a number of
arguments through the RTCPointQueryFunctionArguments structure. The
query object is the original point query object passed into rtcPointQuery, us-
rPtr is an arbitrary pointer to pass input into and store results of the callback
function. The primID, geomID and context (see rtcInitPointQueryContext for
details) can be used to identify the geometry data of the primitive.

Embree API Reference 123

A RTCPointQueryFunction can also be passed directly as an argument to
rtcPointQuery. In this case the callback is invoked for all primitives in the scene
that intersect the query domain. If a callback function is passed as an argument
to rtcPointQuery and (a potentially different) callback function is set for a ge-
ometry with rtcSetGeometryPointQueryFunction both callback functions are in-
voked and the callback function passed to rtcPointQuery will be called before the
geometry specific callback function.

If instancing is used, the parameter simliarityScale indicates whether the
current instance transform (top element of the stack in context) is a similarity
transformation or not. Similarity transformations are composed of translation,
rotation and uniform scaling and if a matrix M defines a similarity transforma-
tion, there is a scaling factor D such that for all x,y: dist(Mx, My) = D * dist(x,
y). In this case the parameter scalingFactor is this scaling factor D and other-
wise it is 0. A valid similarity scale (similarityScale > 0) allows to compute
distance information in instance space and scale the distances into world space
(for example, to update the query radius, see below) by dividing the instance
space distance with the similarity scale. If the current instance transform is not
a similarity transform (similarityScale is 0), the distance computation has
to be performed in world space to ensure correctness. In this case the instance
to world transformations given with the context should be used to transform
the primitive data into world space. Otherwise, the query location can be trans-
formed into instance space which can be more efficient. If there is no instance
transform, the similarity scale is 1.

The callback function will potentially be called for primitives outside the
query domain for two resons: First, the callback is invoked for all primitives
inside a BVH leaf node since no geometry data of primitives is determined inter-
nally and therefore individual primitives are not culled (only their (aggregated)
bounding boxes). Second, in case non similarity transformations are used, the
resulting ellipsoidal query domain (in instance space) is approximated by its axis
aligned bounding box internally and therefore inner nodes that do not intersect
the original domain might intersect the approximative bounding box which re-
sults in unneccessary callbacks. In any case, the callbacks are conservative, i.e. if
a primitive is inside the query domain a callback will be invoked but the reverse
is not neccessarily true.

For efficiency, the radius of the query object can be decreased (inworld space)
inside the callback function to improve culling of geometry during BVH traversal.
If the query radius was updated, the callback function should return true to issue
an update of internal traversal information. Increasing the radius or modifying
the time or position of the query results in undefined behaviour.

Within the callback function, it is safe to call rtcPointQuery again, for ex-
ample when implementing instancing manually. In this case the instance trans-
formation should be pushed onto the stack in context. Embree will internally
compute the point query information in instance space using the top element of
the stack in context when rtcPointQuery is called.

For a reference implementation of a closest point traversal of triangle meshes
using instancing and user defined instancing see the tutorial [ClosestPoint].

SEEALSO

rtcPointQuery, rtcInitPointQueryContext

Embree API Reference 124

7.63 rtcSetGeometryInstancedScene

NAME

rtcSetGeometryInstancedScene - sets the instanced scene of
an instance geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryInstancedScene(
RTCGeometry geometry,
RTCScene scene

);

DESCRIPTION

The rtcSetGeometryInstancedScene function sets the instanced scene (scene
argument) of the specified instance geometry (geometry argument).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_INSTANCE, rtcSetGeometryTransform

Embree API Reference 125

7.64 rtcSetGeometryTransform

NAME

rtcSetGeometryTransform - sets the transformation for a particular
time step of an instance geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTransform(
RTCGeometry geometry,
unsigned int timeStep,
enum RTCFormat format,
const float* xfm

);

DESCRIPTION

The rtcSetGeometryTransform function sets the local-to-world affine trans-
formation (xfm parameter) of an instance geometry (geometry parameter) for a
particular time step (timeStep parameter). The transformation is specified as a
3×4 matrix (3×3 linear transformation plus translation), for which the following
formats (format parameter) are supported:

• RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out in
row-major form.

• RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form.

• RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid out in
column-major form as a 4×4 homogeneous matrix with the last row being
equal to (0, 0, 0, 1).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_INSTANCE

Embree API Reference 126

7.65 rtcSetGeometryTransformQuaternion

NAME

rtcSetGeometryTransformQuaternion - sets the transformation for a particular
time step of an instance geometry as a decomposition of the
transformation matrix using quaternions to represent the rotation.

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTransformQuaternion(
RTCGeometry geometry,
unsigned int timeStep,
const struct RTCQuaternionDecomposition* qd

);

DESCRIPTION

The rtcSetGeometryTransformQuaternion function sets the local-to-world
affine transformation (qd parameter) of an instance geometry (geometry pa-
rameter) for a particular time step (timeStep parameter). The transformation
is specified as a RTCQuaternionDecomposition, which is a decomposition of an
affine transformation that represents the rotational component of an affine trans-
formation as a quaternion. This allows interpolating rotational transformations
exactly using spherical linear interpolation (such as a turning wheel).

Formore information about the decomposition see RTCQuaternionDecompo-
sition. The quaternion given in the RTCQuaternionDecomposition struct will
be normalized internally.

For correct results, the transformation matrices for all time steps must be
set either using rtcSetGeometryTransform or rtcSetGeometryTransfor-
mQuaternion. Mixing both representations is not allowed. Spherical linear
interpolation will be used, iff the transformation matizes are set with rtcSet-
GeometryTransformQuaternion.

For an example of this feature see the tutorial Quaternion Motion Blur.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcInitQuaternionDecomposition, rtcSetGeometryTransform

Embree API Reference 127

7.66 rtcGetGeometryTransform

NAME

rtcGetGeometryTransform - returns the interpolated instance
transformation for the specified time

SYNOPSIS

#include <embree3/rtcore.h>

void rtcGetGeometryTransform(
RTCGeometry geometry,
float time,
enum RTCFormat format,
void* xfm

);

DESCRIPTION

The rtcGetGeometryTransform function returns the interpolated local to world
transformation (xfm parameter) of an instance geometry (geometry parameter)
for a particular time (time parameter in range [0, 1]) in the specified format (for-
mat parameter).

Possible formats for the returned matrix are:

• RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out in
row-major form.

• RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form.

• RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form as a 4×4 homogeneous matrix with last row equal
to (0, 0, 0, 1).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_INSTANCE, rtcSetGeometryTransform

Embree API Reference 128

7.67 rtcSetGeometryTessellationRate

NAME

rtcSetGeometryTessellationRate - sets the tessellation rate of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTessellationRate(
RTCGeometry geometry,
float tessellationRate

);

DESCRIPTION

The rtcSetGeometryTessellationRate function sets the tessellation rate (tes-
sellationRate argument) for the specified geometry (geometry argument).
The tessellation rate can only be set for flat curves and subdivision geometries.
For curves, the tessellation rate specifies the number of ray-facing quads per
curve segment. For subdivision surfaces, the tessellation rate specifies the num-
ber of quads along each edge.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_CURVE, RTC_GEOMETRY_TYPE_SUBDIVISION

Embree API Reference 129

7.68 rtcSetGeometryTopologyCount

NAME

rtcSetGeometryTopologyCount - sets the number of topologies of
a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTopologyCount(
RTCGeometry geometry,
unsigned int topologyCount

);

DESCRIPTION

The rtcSetGeometryTopologyCount function sets the number of topologies
(topologyCount parameter) for the specified subdivision geometry (geometry
parameter). The number of topologies of a subdivision geometry must be greater
or equal to 1.

To use multiple topologies, first the number of topologies must be specified,
then the individual topologies can be configured using rtcSetGeometrySub-
divisionMode and by setting an index buffer (RTC_BUFFER_TYPE_INDEX) using
the topology ID as the buffer slot.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_SUBDIVISION, rtcSetGeometrySubdivisionMode

Embree API Reference 130

7.69 rtcSetGeometrySubdivisionMode

NAME

rtcSetGeometrySubdivisionMode - sets the subdivision mode
of a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometrySubdivisionMode(
RTCGeometry geometry,
unsigned int topologyID,
enum RTCSubdivisionMode mode

);

DESCRIPTION

The rtcSetGeometrySubdivisionMode function sets the subdivision mode
(mode parameter) for the topology (topologyID parameter) of the specified sub-
division geometry (geometry parameter).

The subdivision modes can be used to force linear interpolation for certain
parts of the subdivision mesh:

• RTC_SUBDIVISION_MODE_NO_BOUNDARY: Boundary patches are ignored.
This way each rendered patch has a full set of control vertices.

• RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY: The sequence of boundary
control points are used to generate a smooth B-spline boundary curve (de-
fault mode).

• RTC_SUBDIVISION_MODE_PIN_CORNERS: Corner vertices are pinned to
their location during subdivision.

• RTC_SUBDIVISION_MODE_PIN_BOUNDARY: All vertices at the border are
pinned to their location during subdivision. This way the boundary is in-
terpolated linearly. This mode is typically used for texturing to also map
texels at the border of the texture to the mesh.

• RTC_SUBDIVISION_MODE_PIN_ALL: All vertices at the border are pinned
to their location during subdivision. This way all patches are linearly in-
terpolated.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_SUBDIVISION

Embree API Reference 131

7.70 rtcSetGeometryVertexAttributeTopology

NAME

rtcSetGeometryVertexAttributeTopology - binds a vertex
attribute to a topology of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryVertexAttributeTopology(
RTCGeometry geometry,
unsigned int vertexAttributeID,
unsigned int topologyID

);

DESCRIPTION

The rtcSetGeometryVertexAttributeTopology function binds a vertex at-
tribute buffer slot (vertexAttributeID argument) to a topology (topologyID
argument) for the specified subdivision geometry (geometry argument). Stan-
dard vertex buffers are always bound to the default topology (topology 0) and
cannot be bound differently. A vertex attribute buffer always uses the topology
it is bound to when used in the rtcInterpolate and rtcInterpolateN calls.

A topology with ID i consists of a subdivision mode set through rtcSetGe-
ometrySubdivisionMode and the index buffer bound to the index buffer slot i.
This index buffer can assign indices for each face of the subdivision geometry
that are different to the indices of the default topology. These new indices can
for example be used to introduce additional borders into the subdivision mesh to
map multiple textures onto one subdivision geometry.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcSetGeometrySubdivisionMode, rtcInterpolate, rtcInterpolateN

Embree API Reference 132

7.71 rtcSetGeometryDisplacementFunction

NAME

rtcSetGeometryDisplacementFunction - sets the displacement function
for a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCDisplacementFunctionNArguments
{
void* geometryUserPtr;
RTCGeometry geometry;
unsigned int primID;
unsigned int timeStep;
const float* u;
const float* v;
const float* Ng_x;
const float* Ng_y;
const float* Ng_z;
float* P_x;
float* P_y;
float* P_z;
unsigned int N;

};

typedef void (*RTCDisplacementFunctionN)(
const struct RTCDisplacementFunctionNArguments* args

);

void rtcSetGeometryDisplacementFunction(
RTCGeometry geometry,
RTCDisplacementFunctionN displacement

);

DESCRIPTION

The rtcSetGeometryDisplacementFunction function registers a displacement
callback function (displacement argument) for the specified subdivision geom-
etry (geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered displacement callback function is invoked to displace points
on the subdivision geometry during spatial acceleration structure construction,
during the rtcCommitScene call.

The callback function of type RTCDisplacementFunctionN is invokedwith a
number of arguments stored inside the RTCDisplacementFunctionNArguments
structure. The provided user data pointer of the geometry (geometryUserPtr
member) can be used to point to the application’s representation of the subdivi-
sion mesh. A number N of points to displace are specified in a structure of array
layout. For each point to displace, the local patch UV coordinates (u and v ar-
rays), the normalized geometry normal (Ng_x, Ng_y, and Ng_z arrays), and the
position (P_x, P_y, and P_z arrays) are provided. The task of the displacement
function is to use this information and change the position data.

Embree API Reference 133

The geometry handle (geometry member) and primitive ID (primID mem-
ber) of the patch to displace are additionally provided as well as the time step
timeStep, which can be important if the displacement is time-dependent and
motion blur is used.

All passed arrays must be aligned to 64 bytes and properly padded to make
wide vector processing inside the displacement function easily possible.

Also see tutorial Displacement Geometry for an example of how to use the
displacement mapping functions.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

RTC_GEOMETRY_TYPE_SUBDIVISION

Embree API Reference 134

7.72 rtcGetGeometryFirstHalfEdge

NAME

rtcGetGeometryFirstHalfEdge - returns the first half edge of a face

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryFirstHalfEdge(
RTCGeometry geometry,
unsigned int faceID

);

DESCRIPTION

The rtcGetGeometryFirstHalfEdge function returns the ID of the first half
edge belonging to the specified face (faceID argument). For instance in the fol-
lowing example the first half edge of face f1 is e4.

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not de-
pend on the topology ID.

Here f0 to f7 are 8 quadrilateral faces with 4 vertices each. The edges e0 to e23
of these faces are shown with their orientation. For each face the ID of the edges
corresponds to the slots the face occupies in the index array of the geometry. E.g.
as the indices of face f1 start at location 4 of the index array, the first edge is edge
e4, the next edge e5, etc.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOpposite-
HalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

Embree API Reference 135

7.73 rtcGetGeometryFace

NAME

rtcGetGeometryFace - returns the face of some half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryFace(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryFace function returns the ID of the face the specified half
edge (edgeID argument) belongs to. For instance in the following example the
face f1 is returned for edges e4, e5, e6, and e7.

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not de-
pend on the topology ID.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOpposite-
HalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

Embree API Reference 136

7.74 rtcGetGeometryNextHalfEdge

NAME

rtcGetGeometryNextHalfEdge - returns the next half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryNextHalfEdge(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryNextHalfEdge function returns the ID of the next half
edge of the specified half edge (edgeID argument). For instance in the following
example the next half edge of e10 is e11.

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not de-
pend on the topology ID.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOpposite-
HalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

Embree API Reference 137

7.75 rtcGetGeometryPreviousHalfEdge

NAME

rtcGetGeometryPreviousHalfEdge - returns the previous half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryPreviousHalfEdge(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryPreviousHalfEdge function returns the ID of the previ-
ous half edge of the specified half edge (edgeID argument). For instance in the
following example the previous half edge of e6 is e5.

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not de-
pend on the topology ID.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOpposite-
HalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

Embree API Reference 138

7.76 rtcGetGeometryOppositeHalfEdge

NAME

rtcGetGeometryOppositeHalfEdge - returns the opposite half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryOppositeHalfEdge(
RTCGeometry geometry,
unsigned int topologyID,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryOppositeHalfEdge function returns the ID of the opposite
half edge of the specified half edge (edgeID argument) in the specified topology
(topologyID argument). For instance in the following example the opposite half
edge of e6 is e16.

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

An opposite half edge does not exist if the specified half edge has either no
neighboring face, or more than 2 neighboring faces. In these cases the function
just returns the same edge edgeID again.

This function can only be used for subdivision geometries. The function de-
pends on the topology as the topologies of a subdivision geometry have different
index buffers assigned.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOpposite-
HalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

Embree API Reference 139

7.77 rtcInterpolate

NAME

rtcInterpolate - interpolates vertex attributes

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCInterpolateArguments
{
RTCGeometry geometry;
unsigned int primID;
float u;
float v;
enum RTCBufferType bufferType;
unsigned int bufferSlot;
float* P;
float* dPdu;
float* dPdv;
float* ddPdudu;
float* ddPdvdv;
float* ddPdudv;
unsigned int valueCount;

};

void rtcInterpolate(
const struct RTCInterpolateArguments* args

);

DESCRIPTION

The rtcInterpolate function smoothly interpolates per-vertex data over the ge-
ometry. This interpolation is supported for triangle meshes, quad meshes, curve
geometries, and subdivision geometries. Apart from interpolating the vertex at-
tribute itself, it is also possible to get the first and second order derivatives of
that value. This interpolation ignores displacements of subdivision surfaces and
always interpolates the underlying base surface.

The rtcInterpolate call gets passed a number of arguments inside a struc-
ture of type RTCInterpolateArguments. For some geometry (geometry param-
eter) this function smoothly interpolates the per-vertex data stored inside the
specified geometry buffer (bufferType and bufferSlot parameters) to the u/v
location (u and v parameters) of the primitive (primID parameter). The num-
ber of floating point values to interpolate and store to the destination arrays can
be specified using the valueCount parameter. As interpolation buffer, one can
specify vertex buffers (RTC_BUFFER_TYPE_VERTEX) and vertex attribute buffers
(RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) as well.

The rtcInterpolate call stores valueCount number of interpolated float-
ing point values to the memory location pointed to by P. One can avoid storing
the interpolated value by setting P to NULL.

The first order derivative of the interpolation by u and v are stored at the
dPdu and dPdv memory locations. One can avoid storing first order derivatives
by setting both dPdu and dPdv to NULL.

The second order derivatives are stored at the ddPdudu, ddPdvdv, and ddP-
dudv memory locations. One can avoid storing second order derivatives by set-
ting these three pointers to NULL.

Embree API Reference 140

To use rtcInterpolate for a geometry, all changes to that geometry must
be properly committed using rtcCommitGeometry.

All input buffers and output arrays must be padded to 16 bytes, as the imple-
mentation uses 16-byte SSE instructions to read and write into these buffers.

See tutorial Interpolation for an example of using the rtcInterpolate func-
tion.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcInterpolateN

Embree API Reference 141

7.78 rtcInterpolateN

NAME

rtcInterpolateN - performs N interpolations of vertex attribute data

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCInterpolateNArguments
{
RTCGeometry geometry;
const void* valid;
const unsigned int* primIDs;
const float* u;
const float* v;
unsigned int N;
enum RTCBufferType bufferType;
unsigned int bufferSlot;
float* P;
float* dPdu;
float* dPdv;
float* ddPdudu;
float* ddPdvdv;
float* ddPdudv;
unsigned int valueCount;

};

void rtcInterpolateN(
const struct RTCInterpolateNArguments* args

);

DESCRIPTION

The rtcInterpolateN is similar to rtcInterpolate, but performs N many in-
terpolations at once. It additionally gets an array of u/v coordinates and a valid
mask (valid parameter) that specifies which of these coordinates are valid. The
valid mask points to N integers, and a value of -1 denotes valid and 0 invalid. If
the valid pointer is NULL all elements are considers valid. The destination arrays
are filled in structure of array (SOA) layout. The value N must be divisible by 4.

To use rtcInterpolateN for a geometry, all changes to that geometry must
be properly committed using rtcCommitGeometry.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcInterpolate

Embree API Reference 142

7.79 rtcNewBuffer

NAME

rtcNewBuffer - creates a new data buffer

SYNOPSIS

#include <embree3/rtcore.h>

RTCBuffer rtcNewBuffer(
RTCDevice device,
size_t byteSize

);

DESCRIPTION

The rtcNewBuffer function creates a new data buffer object of specified size in
bytes (byteSize argument) that is bound to the specified device (device argu-
ment). The buffer object is reference counted with an initial reference count of
1. The returned buffer object can be released using the rtcReleaseBuffer API
call. The specified number of bytes are allocated at buffer construction time and
deallocated when the buffer is destroyed.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VER-
TEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must
be readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcRetainBuffer, rtcReleaseBuffer

Embree API Reference 143

7.80 rtcNewSharedBuffer

NAME

rtcNewSharedBuffer - creates a new shared data buffer

SYNOPSIS

#include <embree3/rtcore.h>

RTCBuffer rtcNewSharedBuffer(
RTCDevice device,
void* ptr,
size_t byteSize

);

DESCRIPTION

The rtcNewSharedBuffer function creates a new shared data buffer object
bound to the specified device (device argument). The buffer object is refer-
ence counted with an initial reference count of 1. The buffer can be released
using the rtcReleaseBuffer function.

At construction time, the pointer to the user-managed buffer data (ptr ar-
gument) including its size in bytes (byteSize argument) is provided to create
the buffer. At buffer construction time no buffer data is allocated, but the buffer
data provided by the application is used. The buffer data must remain valid for
as long as the buffer may be used, and the user is responsible to free the buffer
data when no longer required.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VER-
TEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must
be readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

The data pointer (ptr argument) must be aligned to 4 bytes; otherwise the
rtcNewSharedBuffer function will fail.

EXITSTATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcRetainBuffer, rtcReleaseBuffer

Embree API Reference 144

7.81 rtcRetainBuffer

NAME

rtcRetainBuffer - increments the buffer reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainBuffer(RTCBuffer buffer);

DESCRIPTION

Buffer objects are reference counted. The rtcRetainBuffer function incre-
ments the reference count of the passed buffer object (buffer argument). This
function together with rtcReleaseBuffer allows to use the internal reference
counting in a C++ wrapper class to handle the ownership of the object.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewBuffer, rtcReleaseBuffer

Embree API Reference 145

7.82 rtcReleaseBuffer

NAME

rtcReleaseBuffer - decrements the buffer reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseBuffer(RTCBuffer buffer);

DESCRIPTION

Buffer objects are reference counted. The rtcReleaseBuffer function decre-
ments the reference count of the passed buffer object (buffer argument). When
the reference count falls to 0, the buffer gets destroyed.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewBuffer, rtcRetainBuffer

Embree API Reference 146

7.83 rtcGetBufferData

NAME

rtcGetBufferData - gets a pointer to the buffer data

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetBufferData(RTCBuffer buffer);

DESCRIPTION

The rtcGetBufferData function returns a pointer to the buffer data of the spec-
ified buffer object (buffer argument).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewBuffer

Embree API Reference 147

7.84 RTCRay

NAME

RTCRay - single ray structure

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTC_ALIGN(16) RTCRay
{
float org_x; // x coordinate of ray origin
float org_y; // y coordinate of ray origin
float org_z; // z coordinate of ray origin
float tnear; // start of ray segment

float dir_x; // x coordinate of ray direction
float dir_y; // y coordinate of ray direction
float dir_z; // z coordinate of ray direction
float time; // time of this ray for motion blur

float tfar; // end of ray segment (set to hit distance)
unsigned int mask; // ray mask
unsigned int id; // ray ID
unsigned int flags; // ray flags

};

DESCRIPTION

The RTCRay structure defines the ray layout for a single ray. The ray contains
the origin (org_x, org_y, org_zmembers), direction vector (dir_x, dir_y, dir_
z members), and ray segment (tnear and tfar members). The ray direction
does not have to be normalized, and only the parameter range specified by the
tnear/tfar interval is considered valid.

The ray segment must be in the range [0,∞], thus ranges that start behind
the ray origin are not allowed, but ranges can reach to infinity. For rays inside a
ray stream, tfar < tnear identifies an inactive ray.

The ray further contains a motion blur time in the range [0, 1] (time mem-
ber), a ray mask (mask member), a ray ID (id member), and ray flags (flags
member). The ray mask can be used to mask out some geometries for some rays
(see rtcSetGeometryMask for more details). The ray ID can be used to identify
a ray inside a callback function, even if the order of rays inside a ray packet or
stream has changed. The ray flags are reserved.

The embree3/rtcore_ray.h header additionally defines the same ray struc-
ture in structure of array (SOA) layout for API functions accepting ray packets
of size 4 (RTCRay4 type), size 8 (RTCRay8 type), and size 16 (RTCRay16 type). The
header additionally defines an RTCRayNt template for ray packets of an arbitrary
compile-time size.

EXITSTATUS

SEEALSO

RTCHit

Embree API Reference 148

7.85 RTCHit

NAME

RTCHit - single hit structure

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCHit
{
float Ng_x; // x coordinate of geometry normal
float Ng_y; // y coordinate of geometry normal
float Ng_z; // z coordinate of geometry normal

float u; // barycentric u coordinate of hit
float v; // barycentric v coordinate of hit

unsigned int primID; // geometry ID
unsigned int geomID; // primitive ID
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT]; // instance ID

};

DESCRIPTION

The RTCHit type defines the type of a ray/primitive intersection result. The hit
contains the unnormalized geometric normal in object space at the hit location
(Ng_x, Ng_y, Ng_z members), the barycentric u/v coordinates of the hit (u and v
members), as well as the primitive ID (primID member), geometry ID (geomID
member), and instance ID stack (instID member) of the hit. The parametric in-
tersection distance is not stored inside the hit, but stored inside the tfarmember
of the ray.

The embree3/rtcore_ray.h header additionally defines the same hit struc-
ture in structure of array (SOA) layout for hit packets of size 4 (RTCHit4 type),
size 8 (RTCHit8 type), and size 16 (RTCHit16 type). The header additionally de-
fines an RTCHitNt template for hit packets of an arbitrary compile-time size.

EXITSTATUS

SEEALSO

RTCRay, [Multi-Level Instancing]

Embree API Reference 149

7.86 RTCRayHit

NAME

RTCRayHit - combined single ray/hit structure

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCORE_ALIGN(16) RTCRayHit
{
struct RTCRay ray;
struct RTCHit hit;

};

DESCRIPTION

The RTCRayHit structure is used as input for the rtcIntersect-type functions
and stores the ray to intersect and some hit fields that hold the intersection result
afterwards.

The embree3/rtcore_ray.h header additionally defines the same ray/hit
structure in structure of array (SOA) layout for API functions accepting ray pack-
ets of size 4 (RTCRayHit4 type), size 8 (RTCRayHit8 type), and size 16 (RTCRay-
Hit16 type). The header additionally defines an RTCRayHitNt template to gen-
erate ray/hit packets of an arbitrary compile-time size.

EXITSTATUS

SEEALSO

RTCRay, RTCHit

Embree API Reference 150

7.87 RTCRayN

NAME

RTCRayN - ray packet of runtime size

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCRayN;

float& RTCRayN_org_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_tnear(RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_dir_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_time (RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_tfar (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_mask (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_id (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_flags(RTCRayN* ray, unsigned int N, unsigned int i);

DESCRIPTION

When the ray packet size is not known at compile time (e.g. when Embree re-
turns a ray packet in the RTCFilterFuncN callback function), Embree uses the
RTCRayN type for ray packets. These ray packets can only have sizes of 1, 4, 8, or
16. No other packet size will be used.

You can either implement different special code paths for each of these possi-
ble packet sizes and cast the ray to the appropriate ray packet type, or implement
one general code path that uses the RTCRayN_XXX helper functions to access the
ray packet components.

These helper functions get a pointer to the ray packet (ray argument), the
packet size (N argument), and returns a reference to a component (e.g. x-component
of origin) of the the i-th ray of the packet (i argument).

EXITSTATUS

SEEALSO

RTCHitN

Embree API Reference 151

7.88 RTCHitN

NAME

RTCHitN - hit packet of runtime size

SYNOPSIS

#include <embree3/rtcore.h>

struct HitN;

float& RTCHitN_Ng_x(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_y(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_z(RTCHitN* hit, unsigned int N, unsigned int i);

float& RTCHitN_u(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_v(RTCHitN* hit, unsigned int N, unsigned int i);

unsigned& RTCHitN_primID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_geomID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_instID(RTCHitN* hit, unsigned int N, unsigned int i, unsigned int level);

DESCRIPTION

When the hit packet size is not known at compile time (e.g. when Embree returns
a hit packet in the RTCFilterFuncN callback function), Embree uses the RTCHitN
type for hit packets. These hit packets can only have sizes of 1, 4, 8, or 16. No
other packet size will be used.

You can either implement different special code paths for each of these possi-
ble packet sizes and cast the hit to the appropriate hit packet type, or implement
one general code path that uses the RTCHitN_XXX helper functions to access hit
packet components.

These helper functions get a pointer to the hit packet (hit argument), the
packet size (N argument), and returns a reference to a component (e.g. x compo-
nent of Ng) of the the i-th hit of the packet (i argument).

EXITSTATUS

SEEALSO

RTCRayN

Embree API Reference 152

7.89 RTCRayHitN

NAME

RTCRayHitN - combined ray/hit packet of runtime size

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCRayHitN;

struct RTCRayN* RTCRayHitN_RayN(struct RTCRayHitN* rayhit, unsigned int N);
struct RTCHitN* RTCRayHitN_HitN(struct RTCRayHitN* rayhit, unsigned int N);

DESCRIPTION

When the packet size of a ray/hit structure is not known at compile time (e.g. when
Embree returns a ray/hit packet in the RTCIntersectFunctionN callback func-
tion), Embree uses the RTCRayHitN type for ray packets. These ray/hit packets
can only have sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these pos-
sible packet sizes and cast the ray/hit to the appropriate ray/hit packet type,
or extract the RTCRayN and RTCHitN components using the rtcGetRayN and
rtcGetHitN helper functions and use the RTCRayN_XXX and RTCHitN_XXX func-
tions to access the ray and hit parts of the structure.

EXITSTATUS

SEEALSO

RTCHitN

Embree API Reference 153

7.90 rtcInitIntersectContext

NAME

rtcInitIntersectContext - initializes the intersection context

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCIntersectContextFlags
{
RTC_INTERSECT_CONTEXT_FLAG_NONE,
RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT,
RTC_INTERSECT_CONTEXT_FLAG_COHERENT,

};

struct RTCIntersectContext
{
enum RTCIntersectContextFlags flags;
RTCFilterFunctionN filter;

#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
unsigned int instStackSize;

#endif

unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

#if RTC_MIN_WIDTH
float minWidthDistanceFactor;

#endif
};

void rtcInitIntersectContext(
struct RTCIntersectContext* context

);

DESCRIPTION

A per ray-query intersection context (RTCIntersectContext type) is supported
that can be used to configure intersection flags (flags member), specify a filter
callback function (filter member), specify the chain of IDs of the current in-
stance (instID and instStackSize members), and to attach arbitrary data to
the query (e.g. per ray data).

The rtcInitIntersectContext function initializes the context to default
values and should be called to initialize every intersection context. This function
gets inlined, which minimizes overhead and allows for compiler optimizations.

The intersection context flag can be used to tune the behavior of the traversal
algorithm. Using the RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT flags uses
an optimized traversal algorithm for incoherent rays (default), while RTC_IN-
TERSECT_CONTEXT_FLAG_COHERENT uses an optimized traversal algorithm for
coherent rays (e.g. primary camera rays).

Best primary ray performance can be obtained by using the ray stream API
and setting the intersect context flag to RTC_INTERSECT_CONTEXT_FLAG_CO-
HERENT. For secondary rays, it is typically better to use the RTC_INTERSECT_
CONTEXT_FLAG_INCOHERENT flag, unless the rays are known to be very coherent
too (e.g. for primary transparency rays).

Embree API Reference 154

A filter function can be specified inside the context. This filter function is
invoked as a second filter stage after the per-geometry intersect or occluded filter
function is invoked. Only rays that passed the first filter stage are valid in this
second filter stage. Having such a per ray-query filter function can be useful
to implement modifications of the behavior of the query, such as collecting all
hits or accumulating transparencies. The support for the context filter function
must be enabled for a scene by using the RTC_SCENE_FLAG_CONTEXT_FILTER_
FUNCTION scene flag. In case of instancing this feature has to get enabled also
for each instantiated scene.

The minWidthDistanceFactor value controls the target size of the curve radii
when the min-width feature is enabled. Please see the [rtcSetGeometryMaxRa-
diusScale] function for more details on the min-width feature.

It is guaranteed that the pointer to the intersection context passed to a ray
query is directly passed to the registered callback functions. This way it is pos-
sible to attach arbitrary data to the end of the intersection context, such as a
per-ray payload.

Please note that the ray pointer is not guaranteed to be passed to the callback
functions, thus reading additional data from the ray pointer passed to callbacks
is not possible.

EXITSTATUS

No error code is set by this function.

SEEALSO

rtcIntersect1, rtcOccluded1

Embree API Reference 155

7.91 rtcIntersect1

NAME

rtcIntersect1 - finds the closest hit for a single ray

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit* rayhit

);

DESCRIPTION

The rtcIntersect1 function finds the closest hit of a single ray with the scene
(scene argument). The provided ray/hit structure (rayhit argument) contains
the ray to intersect and some hit output fields that are filled when a hit is found.

The user has to initialize the ray origin (org ray member), ray direction (dir
ray member), ray segment (tnear, tfar ray members), and set the ray flags to
0 (flags ray member). If the scene contains motion blur geometries, also the
ray time (time ray member) must be initialized to a value in the range [0, 1]. If
ray masks are enabled at compile time, the ray mask (mask ray member) must
be initialized as well. The ray segment has to be in the range [0,∞], thus ranges
that start behind the ray origin are not valid, but ranges can reach to infinity. See
Section RTCRay for the ray layout description.

The geometry ID (geomID hit member) of the hit data must be initialized to
RTC_INVALID_GEOMETRY_ID (-1).

Further, an intersection context for the ray query function must be created
and initialized (see rtcInitIntersectContext).

When no intersection is found, the ray/hit data is not updated. When an
intersection is found, the hit distance is written into the tfarmember of the ray
and all hit data is set, such as unnormalized geometry normal in object space (Ng
hit member), local hit coordinates (u, v hit member), instance ID stack (instID
hit member), geometry ID (geomID hit member), and primitive ID (primID hit
member). See Section RTCHit for the hit layout description.

If the instance ID stack has a prefix of values not equal to RTC_INVALID_
GEOMETRY_ID, the instance ID on each level corresponds to the geometry ID of
the hit instance of the higher-level scene, the geometry ID corresponds to the hit
geometry inside the hit instanced scene, and the primitive ID corresponds to the
n-th primitive of that geometry.

If level 0 of the instance ID stack is equal to RTC_INVALID_GEOMETRY_ID, the
geometry ID corresponds to the hit geometry inside the top-level scene, and the
primitive ID corresponds to the n-th primitive of that geometry.

The implementation makes no guarantees that primitives whose hit distance
is exactly at (or very close to) tnear or tfar are hit or missed. If you want to
exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

Embree API Reference 156

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the raywith additional data to be accessed
in callback functions, use the intersection context.

The ray/hit structure must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccluded1, RTCRayHit, RTCRay, RTCHit

Embree API Reference 157

7.92 rtcOccluded1

NAME

rtcOccluded1 - finds any hit for a single ray

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay* ray

);

DESCRIPTION

The rtcOccluded1 function checks for a single ray (ray argument) whether
there is any hit with the scene (scene argument).

The user must initialize the ray origin (org ray member), ray direction (dir
ray member), ray segment (tnear, tfar ray members), and must set the ray flags
to 0 (flags ray member). If the scene contains motion blur geometries, also the
ray time (time ray member) must be initialized to a value in the range [0, 1]. If
ray masks are enabled at compile time, the ray mask (mask ray member) must
be initialized as well. The ray segment must be in the range [0,∞], thus ranges
that start behind the ray origin are not valid, but ranges can reach to infinity. See
Section RTCRay for the ray layout description.

When no intersection is found, the ray data is not updated. In case a hit was
found, the tfar component of the ray is set to -inf.

The implementation makes no guarantees that primitives whose hit distance
is exactly at (or very close to) tnear or tfar are hit or missed. If you want to
exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the raywith additional data to be accessed
in callback functions, use the intersection context.

The ray must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccluded1, RTCRay

Embree API Reference 158

7.93 rtcIntersect4/8/16

NAME

rtcIntersect4/8/16 - finds the closest hits for a ray packet

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect4(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit4* rayhit

);

void rtcIntersect8(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit8* rayhit

);

void rtcIntersect16(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit16* rayhit

);

DESCRIPTION

The rtcIntersect4/8/16 functions finds the closest hits for a ray packet of size
4, 8, or 16 (rayhit argument) with the scene (scene argument). The ray/hit input
contains a ray packet and hit packet. See Section rtcIntersect1 for a description
of how to set up and trace rays.

A ray valid mask must be provided (valid argument) which stores one 32-bit
integer (-1means valid and 0 invalid) per ray in the packet. Only active rays are
processed, and hit data of inactive rays is not changed.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the raywith additional data to be accessed
in callback functions, use the intersection context.

The implementation of these functions is guaranteed to invoke callback func-
tions always with the same ray packet size and ordering of rays as specified ini-
tially.

For rtcIntersect4 the ray packet must be aligned to 16 bytes, for rtcIn-
tersect8 the alignment must be 32 bytes, and for rtcIntersect16 the align-
ment must be 64 bytes.

The rtcIntersect4, rtcIntersect8 and rtcIntersect16 functions may
change the ray packet size and ray order when calling back into intersect filter
functions or user geometry callbacks. Under some conditions the application can

Embree API Reference 159

assume packets to stay intakt, which can determined by querying the RTC_DE-
VICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_
RAY8_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED proper-
ties through the rtcGetDeviceProperty function. See rtcGetDeviceProperty
for more information.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccluded4/8/16

Embree API Reference 160

7.94 rtcOccluded4/8/16

NAME

rtcOccluded4/8/16 - finds any hits for a ray packet

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded4(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay4* ray

);

void rtcOccluded8(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay8* ray

);

void rtcOccluded16(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay16* ray

);

DESCRIPTION

The rtcOccluded4/8/16 functions checks for each active ray of the ray packet
of size 4, 8, or 16 (ray argument) whether there is any hit with the scene (scene
argument). See Section rtcOccluded1 for a description of how to set up and trace
occlusion rays.

A ray valid mask must be provided (valid argument) which stores one 32-bit
integer (-1means valid and 0 invalid) per ray in the packet. Only active rays are
processed, and hit data of inactive rays is not changed.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the raywith additional data to be accessed
in callback functions, use the intersection context.

The implementation of these functions is guaranteed to invoke callback func-
tions always with the same ray packet size and ordering of rays as specified ini-
tially.

For rtcOccluded4 the ray packet must be aligned to 16 bytes, for rtcOc-
cluded8 the alignment must be 32 bytes, and for rtcOccluded16 the alignment
must be 64 bytes.

The rtcOccluded4, rtcOccluded8 and rtcOccluded16 functionsmay change
the ray packet size and ray order when calling back into intersect filter func-
tions or user geometry callbacks. Under some conditions the application can

Embree API Reference 161

assume packets to stay intakt, which can determined by querying the RTC_DE-
VICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_
RAY8_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED proper-
ties through the rtcGetDeviceProperty function. See rtcGetDeviceProperty
for more information.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccluded4/8/16

Embree API Reference 162

7.95 rtcIntersect1M

NAME

rtcIntersect1M - finds the closest hits for a stream of M single
rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit* rayhit,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcIntersect1M function finds the closest hits for a stream of M single rays
(rayhit argument) with the scene (scene argument). The rayhit argument
points to an array of ray and hit data with specified byte stride (byteStride argu-
ment) between the ray/hit structures. See Section rtcIntersect1 for a description
of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccluded1M

Embree API Reference 163

7.96 rtcOccluded1M

NAME

rtcOccluded1M - finds any hits for a stream of M single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay* ray,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcOccluded1M function checks whether there are any hits for a stream of M
single rays (ray argument) with the scene (scene argument). The ray argument
points to an array of rays with specified byte stride (byteStride argument) be-
tween the rays. See Section rtcOccluded1 for a description of how to set up and
trace occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcIntersect1M

Embree API Reference 164

7.97 rtcIntersect1Mp

NAME

rtcIntersect1Mp - finds the closest hits for a stream of M pointers
to single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1Mp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit** rayhit,
unsigned int M

);

DESCRIPTION

The rtcIntersect1Mp function finds the closest hits for a stream of M single rays
(rayhit argument) with the scene (scene argument). The rayhit argument
points to an array of pointers to the individual ray/hit structures. See Section
rtcIntersect1 for a description of how to set up and trace a ray.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccluded1Mp

Embree API Reference 165

7.98 rtcOccluded1Mp

NAME

rtcOccluded1Mp - find any hits for a stream of M pointers to
single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay** ray,
unsigned int M

);

DESCRIPTION

The rtcOccluded1Mp function checks whether there are any hits for a stream
of M single rays (ray argument) with the scene (scene argument). The ray argu-
ment points to an array of pointers to rays. Section rtcOccluded1 for a description
of how to set up and trace a occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcIntersect1Mp

Embree API Reference 166

7.99 rtcIntersectNM

NAME

rtcIntersectNM - finds the closest hits for a stream of M
ray packets of size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersectNM(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHitN* rayhit,
unsigned int N,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcIntersectNM function finds the closest hits for a stream of M ray pack-
ets (rayhit argument) of size N with the scene (scene argument). The rays
argument points to an array of ray and hit packets with specified byte stride
(byteStride argument) between the ray/hit packets. See Section rtcIntersect1
for a description of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The packet size N must be larger than 0, and the stream size M can be an
arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccludedNM

Embree API Reference 167

7.100 rtcOccludedNM

NAME

rtcOccludedNM - finds any hits for a stream of M ray packets of
size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccludedNM(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayN* ray,
unsigned int N,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcOccludedNM function checks whether there are any hits for a stream
of M ray packets (ray argument) of size N with the scene (scene argument).
The ray argument points to an array of ray packets with specified byte stride
(byteStride argument) between the ray packets. See Section rtcOccluded1 for
a description of how to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The packet size N must be larger than 0, and the stream size M can be an
arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcIntersectNM

Embree API Reference 168

7.101 rtcIntersectNp

NAME

rtcIntersectNp - finds the closest hits for a SOA ray stream of
size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersectNp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHitNp* rayhit,
unsigned int N

);

DESCRIPTION

The rtcIntersectNp function finds the closest hits for a SOA ray stream (rays
argument) of size N (basically a large ray packet) with the scene (scene argu-
ment). The rayhit argument points to two structures of pointers with one
pointer for each ray and hit component. Each of these pointers points to an
array with the ray or hit component data for each ray or hit. This way the indi-
vidual components of the SOA ray stream do not need to be stored sequentially in
memory, which makes it possible to have large varying size ray packets in SOA
layout. See Section rtcIntersect1 for a description of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size N can be an arbitrary positive integer including 0. Each ray
component array must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcOccludedNp

Embree API Reference 169

7.102 rtcOccludedNp

NAME

rtcOccludedNp - finds any hits for a SOA ray stream of size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccludedNp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayNp* ray,
unsigned int N

);

DESCRIPTION

The rtcOccludedNp function checks whether there are any hits for a SOA ray
stream (ray argument) of size N (basically a large ray packet) with the scene
(scene argument). The ray argument points to a structure of pointers with one
pointer for each ray component. Each of these pointers points to an array with
the ray component data for each ray. This way the individual components of the
SOA ray stream do not need to be stored sequentially in memory, which makes
it possible to have large varying size ray packets in SOA layout. See Section
rtcOccluded1 for a description of how to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8,
or 16) and different ordering as specified initially. For this reason, one may have
to use the rayID component of the ray to identify the original ray, e.g. to access
a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size N can be an arbitrary positive integer including 0. Each ray
component array must be aligned to 16 bytes.

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcIntersectNp

Embree API Reference 170

7.103 rtcInitPointQueryContext

NAME

rtcInitPointQueryContext - initializes the context information (e.g.
stack of (multilevel-)instance transformations) for point queries

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(16) RTCPointQueryContext
{
// accumulated 4x4 column major matrices from world to instance space.
float world2inst[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// accumulated 4x4 column major matrices from instance to world space.
float inst2world[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// instance ids.
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

// number of instances currently on the stack.
unsigned int instStackSize;

};

void rtcInitPointQueryContext(
struct RTCPointQueryContext* context

);

DESCRIPTION

A stack (RTCPointQueryContext type) which stores the IDs and instance trans-
formations during a BVH traversal for a point query. The transformations are
assumed to be affine transformations (3×3 matrix plus translation) and therefore
the last column is ignored (see RTC_GEOMETRY_TYPE_INSTANCE for details).

The rtcInitPointContext function initializes the context to default values
and should be called for initialization.

The context will be passed as an argument to the point query callback func-
tion (see rtcSetGeometryPointQueryFunction) and should be used to pass in-
stance information down the instancing chain for user defined instancing (see
tutorial [ClosestPoint] for a reference implementation of point queries with user
defined instancing).

The context is an necessary argument to rtcPointQuery and Embree inter-
nally uses the topmost instance tranformation of the stack to transform the point
query into instance space.

EXITSTATUS

No error code is set by this function.

SEEALSO

rtcPointQuery, rtcSetGeometryPointQueryFunction

Embree API Reference 171

7.104 rtcPointQuery

NAME

rtcPointQuery - traverses the BVH with a point query object

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(16) RTCPointQuery
{
// location of the query
float x;
float y;
float z;

// radius and time of the query
float radius;
float time;

};

void rtcPointQuery(
RTCScene scene,
struct RTCPointQuery* query,
struct RTCPointQueryContext* context,
struct RTCPointQueryFunction* queryFunc,
void* userPtr

);

DESCRIPTION

The rtcPointQuery function traverses the BVH using a RTCPointQuery object
(query argument) and calls a user defined callback function (e.g queryFunc argu-
ment) for each primitive of the scene (scene argument) that intersects the query
domain.

The user has to initialize the query location (x, y and z member) and query
radius in the range [0,∞]. If the scene contains motion blur geometries, also the
query time (time member) must be initialized to a value in the range [0, 1].

Further, a RTCPointQueryContext (context argument) must be created and
initialized. It contains ID and transformation information of the instancing hier-
archy if (multilevel-)instancing is used. See rtcInitPointQueryContext for further
information.

For every primitive that intersects the query domain, the callback function
(queryFunc argument) is called, in which distance computations to the primitive
can be implemented. The user will be provided with the primID and geomID
of the according primitive, however, the geometry information (e.g. triangle in-
dex and vertex data) has to be determined manually. The userPtr argument
can be used to input geometry data of the scene or output results of the point
query (e.g. closest point currently found on surface geometry (see tutorial [Clos-
estPoint])).

The parameter queryFunc is optional and can be NULL, in which case the
callback function is not invoked. However, a callback function can still get at-
tached to a specific RTCGeometry object using rtcSetGeometryPointQueryFunc-
tion. If a callback function is attached to a geometry and (a potentially different)
callback function is passed as an argument to rtcPointQuery, both functions
are called for the primitives of the according geometries.

Embree API Reference 172

The query radius can be decreased inside the callback function, which allows
to efficiently cull parts of the scene during BVH traversal. Increasing the query
radius and modifying time or location of the query will result in undefined be-
haviour.

The callback function will be called for all primitives in a leaf node of the
BVH even if the primitive is outside the query domain, since Embree does not
gather geometry information of primitives internally.

Point queries can be used with (multilevel)-instancing. However, care has
to be taken when the instance transformation contains anisotropic scaling or
sheering. In these cases distance computations have to be performed in world
space to ensure correctness and the ellipsoidal query domain (in instance space)
will be approximated with its axis aligned bounding box interally. Therefore, the
callback function might be invoked even for primitives in inner BVH nodes that
do not intersect the query domain. See rtcSetGeometryPointQueryFunction for
details.

The point query structure must be aligned to 16 bytes.

SUPPORTEDPRIMITIVES

Currenly, all primitive types are supported by the point query API except of
points (see RTC_GEOMETRY_TYPE_POINT), curves (see RTC_GEOMETRY_TYPE_CURVE)
and sudivision surfaces (see [RTC_GEOMETRY_SUBDIVISION]).

EXITSTATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcSetGeometryPointQueryFunction, rtcInitPointQueryContext

Embree API Reference 173

7.105 rtcCollide

NAME

rtcCollide - intersects one BVH with another

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCCollision {
unsigned int geomID0, primID0;
unsigned int geomID1, primID1;

};

typedef void (*RTCCollideFunc) (
void* userPtr,
RTCCollision* collisions,
size_t num_collisions);

void rtcCollide (
RTCScene hscene0,
RTCScene hscene1,
RTCCollideFunc callback,
void* userPtr

);

DESCRIPTION

The rtcCollide function intersects the BVH of hscene0with the BVH of scene
hscene1 and calls a user defined callback function (e.g callback argument) for
each pair of intersecting primitives between the two scenes. A user defined data
pointer (userPtr argument) can also be passed in.

For every pair of primitives that may intersect each other, the callback func-
tion (callback argument) is called. The user will be provided with the primID’s
and geomID’s of multiple potentially intersecting primitive pairs. Currently,
only scene entirely composed of user geometries are supported, thus the user
is expected to implement a primitive/primitive intersection to filter out false pos-
itives in the callback function. The userPtr argument can be used to input ge-
ometry data of the scene or output results of the intersection query.

SUPPORTEDPRIMITIVES

Currently, the only supported type is the user geometry type (see RTC_GEOMETRY_TYPE_USER).

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

Embree API Reference 174

7.106 rtcNewBVH

NAME

rtcNewBVH - creates a new BVH object

SYNOPSIS

#include <embree3/rtcore.h>

RTCBVH rtcNewBVH(RTCDevice device);

DESCRIPTION

This function creates a new BVH object and returns a handle to this BVH. The
BVH object is reference counted with an initial reference count of 1. The handle
can be released using the rtcReleaseBVH API call.

The BVH object can be used to build a BVH in a user-specified format over
user-specified primitives. See the documentation of the rtcBuildBVH call for
more details.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcRetainBVH, rtcReleaseBVH, rtcBuildBVH

Embree API Reference 175

7.107 rtcRetainBVH

NAME

rtcRetainBVH - increments the BVH reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcRetainBVH function increments the
reference count of the passed BVH object (bvh argument). This function together
with rtcReleaseBVH allows to use the internal reference counting in a C++wrap-
per class to handle the ownership of the object.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewBVH, rtcReleaseBVH

Embree API Reference 176

7.108 rtcReleaseBVH

NAME

rtcReleaseBVH - decrements the BVH reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcReleaseBVH function decrements
the reference count of the passed BVH object (bvh argument). When the refer-
ence count falls to 0, the BVH gets destroyed.

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewBVH, rtcRetainBVH

Embree API Reference 177

7.109 rtcBuildBVH

NAME

rtcBuildBVH - builds a BVH

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(32) RTCBuildPrimitive
{
float lower_x, lower_y, lower_z;
unsigned int geomID;
float upper_x, upper_y, upper_z;
unsigned int primID;

};

typedef void* (*RTCCreateNodeFunction) (
RTCThreadLocalAllocator allocator,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeChildrenFunction) (
void* nodePtr,
void** children,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeBoundsFunction) (
void* nodePtr,
const struct RTCBounds** bounds,
unsigned int childCount,
void* userPtr

);

typedef void* (*RTCCreateLeafFunction) (
RTCThreadLocalAllocator allocator,
const struct RTCBuildPrimitive* primitives,
size_t primitiveCount,
void* userPtr

);

typedef void (*RTCSplitPrimitiveFunction) (
const struct RTCBuildPrimitive* primitive,
unsigned int dimension,
float position,
struct RTCBounds* leftBounds,
struct RTCBounds* rightBounds,
void* userPtr

);

typedef bool (*RTCProgressMonitorFunction)(
void* userPtr, double n

);

Embree API Reference 178

enum RTCBuildFlags
{
RTC_BUILD_FLAG_NONE,
RTC_BUILD_FLAG_DYNAMIC

};

struct RTCBuildArguments
{
size_t byteSize;

enum RTCBuildQuality buildQuality;
enum RTCBuildFlags buildFlags;
unsigned int maxBranchingFactor;
unsigned int maxDepth;
unsigned int sahBlockSize;
unsigned int minLeafSize;
unsigned int maxLeafSize;
float traversalCost;
float intersectionCost;

RTCBVH bvh;
struct RTCBuildPrimitive* primitives;
size_t primitiveCount;
size_t primitiveArrayCapacity;

RTCCreateNodeFunction createNode;
RTCSetNodeChildrenFunction setNodeChildren;
RTCSetNodeBoundsFunction setNodeBounds;
RTCCreateLeafFunction createLeaf;
RTCSplitPrimitiveFunction splitPrimitive;
RTCProgressMonitorFunction buildProgress;
void* userPtr;

};

struct RTCBuildArguments rtcDefaultBuildArguments();

void* rtcBuildBVH(
const struct RTCBuildArguments* args

);

DESCRIPTION

The rtcBuildBVH function can be used to build a BVH in a user-defined format
over arbitrary primitives. All arguments to the function are provided through
the RTCBuildArguments structure. The first member of that structure must be
set to the size of the structure in bytes (bytesSizemember) which allows future
extensions of the structure. It is recommended to initialize the build arguments
structure using the rtcDefaultBuildArguments function.

The rtcBuildBVH function gets passed the BVH to build (bvh member), the
array of primitives (primitives member), the capacity of that array (primi-
tiveArrayCapacity member), the number of primitives stored inside the ar-
ray (primitiveCount member), callback function pointers, and a user-defined
pointer (userPtrmember) that is passed to all callback functions when invoked.
The primitives array can be freed by the application after the BVH is built. All
callback functions are typically called from multiple threads, thus their imple-

Embree API Reference 179

mentation must be thread-safe.
Four callback functions must be registered, which are invoked during build

to create BVH nodes (createNode member), to set the pointers to all children
(setNodeChildren member), to set the bounding boxes of all children (setN-
odeBounds member), and to create a leaf node (createLeaf member).

The function pointer to the primitive split function (splitPrimitive mem-
ber) may be NULL, however, then no spatial splitting in high quality mode is pos-
sible. The function pointer used to report the build progress (buildProgress
member) is optional and may also be NULL.

Further, some build settings are passed to configure the BVH build. Using the
build quality settings (buildQuality member), one can select between a faster,
low quality build which is good for dynamic scenes, and a standard quality build
for static scenes. One can also specify the desired maximum branching factor of
the BVH (maxBranchingFactor member), the maximum depth the BVH should
have (maxDepth member), the block size for the SAH heuristic (sahBlockSize
member), the minimum andmaximum leaf size (minLeafSize and maxLeafSize
member), and the estimated costs of one traversal step and one primitive inter-
section (traversalCost and intersectionCostmembers). When enabling the
RTC_BUILD_FLAG_DYNAMIC build flags (buildFlags member), re-build perfor-
mance for dynamic scenes is improved at the cost of higher memory require-
ments.

To spatially split primitives in high quality mode, the builder needs extra
space at the end of the build primitive array to store splitted primitives. The
total capacity of the build primitive array is passed using the primitiveArray-
Capacity member, and should be about twice the number of primitives when
using spatial splits.

The RTCCreateNodeFunc and RTCCreateLeafFunc callbacks are passed a
thread local allocator object that should be used for fast allocation of nodes us-
ing the rtcThreadLocalAlloc function. We strongly recommend using this
allocation mechanism, as alternative approaches like standard malloc can be
over 10× slower. The allocator object passed to the create callbacks may be used
only inside the current thread. Memory allocated using rtcThreadLocalAl-
loc is automatically freed when the RTCBVH object is deleted. If you use your
own memory allocation scheme you have to free the memory yourself when the
RTCBVH object is no longer used.

The RTCCreateNodeFunc callback additionally gets the number of children
for this node in the range from 2 to maxBranchingFactor (childCount argu-
ment).

The RTCSetNodeChildFunc callback function gets a pointer to the node as
input (nodePtr argument), an array of pointers to the children (childPtrs ar-
gument), and the size of this array (childCount argument).

The RTCSetNodeBoundsFunc callback function gets a pointer to the node as
input (nodePtr argument), an array of pointers to the bounding boxes of the
children (bounds argument), and the size of this array (childCount argument).

The RTCCreateLeafFunc callback additionally gets an array of primitives
as input (primitives argument), and the size of this array (primitiveCount
argument). The callback should read the geomID and primID members from the
passed primitives to construct the leaf.

The RTCSplitPrimitiveFunc callback is invoked in high quality mode to
split a primitive (primitive argument) at the specified position (position argu-
ment) and dimension (dimension argument). The callback should return bounds
of the clipped left and right parts of the primitive (leftBounds and rightBounds
arguments).

The RTCProgressMonitorFunction callback function is called with the es-
timated completion rate n in the range [0, 1]. Returning true from the callback
lets the build continue; returning false cancels the build.

Embree API Reference 180

EXITSTATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewBVH

Embree API Reference 181

7.110 RTCQuaternionDecomposition

NAME

RTCQuaternionDecomposition - structure that represents a quaternion
decomposition of an affine transformation

SYNOPSIS

struct RTCQuaternionDecomposition
{
float scale_x, scale_y, scale_z;
float skew_xy, skew_xz, skew_yz;
float shift_x, shift_y, shift_z;
float quaternion_r, quaternion_i, quaternion_j, quaternion_k;
float translation_x, translation_y, translation_z;

};

DESCRIPTION

The struct RTCQuaternionDecomposition represents an affine transformation
decomposed into three parts. An upper triangular scaling/skew/shift matrix

S =

scalex skewxy skewxz shiftx

0 scaley skewyz shifty
0 0 scalez shiftz
0 0 0 1

 ,

a translation matrix

T =

1 0 0 translationx

0 1 0 translationy

0 0 1 translationz

0 0 0 1

 ,

and a rotation matrix R, represented as a quaternion
quaternionr + quaternioni i+ quaternionj i+ quaternionk k
where i, j k are the imaginary quaternion units. The passed quaternion will

be normalized internally.
The affine transformation matrix corresponding to a RTCQuaternionDecom-

position is TRS and a point p = (px, py, pz, 1)
T will be transformed as

p′ = T R S p.

The functions rtcInitQuaternionDecomposition, rtcQuaternionDecom-
positionSetQuaternion, rtcQuaternionDecompositionSetScale, rtcQuater-
nionDecompositionSetSkew, rtcQuaternionDecompositionSetShift, and
rtcQuaternionDecompositionSetTranslation allow to set the fields of the
structure more conveniently.

EXITSTATUS

No error code is set by this function.

SEEALSO

rtcSetGeometryTransformQuaternion, rtcInitQuaternionDecomposition

Embree API Reference 182

7.111 rtcInitQuaternionDecomposition

NAME

rtcInitQuaternionDecomposition - initializes quaternion decomposition

SYNOPSIS

void rtcInitQuaternionDecomposition(
struct RTCQuaternionDecomposition* qd

);

DESCRIPTION

The rtcInitQuaternionDecomposition function initializes a RTCQuaternion-
Decomposition structure to represent an identity transformation.

EXITSTATUS

No error code is set by this function.

SEEALSO

rtcSetGeometryTransformQuaternion, RTCQuaternionDecomposition

183

Chapter 8

PerformanceRecommendations

8.1 MXCSR control and status register

It is strongly recommended to have the Flush to Zero and Denormals are
Zero mode of the MXCSR control and status register enabled for each thread
before calling the rtcIntersect-type and rtcOccluded-type functions. Other-
wise, under some circumstances special handling of denormalized floating point
numbers can significantly reduce application and Embree performance. When
using Embree together with the Intel® Threading Building Blocks, it is sufficient
to execute the following code at the beginning of the application main thread
(before the creation of the tbb::task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each rendering thread has the
proper mode set.

8.2 ThreadCreation andAffinity Settings

Tasking systems like TBB create worker threads on demand, which will add a
runtime overhead for the very first rtcCommitScene call. In case you want
to benchmark the scene build time, you should start the threads at application
startup. You can let Embree start TBB threads by passing start_threads=1 to
the cfg parameter of rtcNewDevice.

On machines with a high thread count (e.g. dual-socket Xeon or Xeon Phi
machines), affinitizing TBB worker threads increases build and rendering per-
formance. You can let Embree affinitize TBB worker threads by passing set_
affinity=1 to the cfg parameter of rtcNewDevice. By default, threads are not
affinitized by Embree with the exception of Xeon Phi Processors where they are
affinitized by default.

All Embree tutorials automatically start and affinitize TBB worker threads by
passing start_threads=1,set_affinity=1 to rtcNewDevice.

Performance Recommendations 184

8.3 Fast Coherent Rays

For getting the highest performance for highly coherent rays, e.g. primary
or hard shadow rays, it is recommended to use packets or streams of single
rays/packets with setting the RTC_INTERSECT_CONTEXT_FLAG_COHERENT flag
in the RTCIntersectContext passed to the rtcIntersect/rtcOccluded calls.
The total number of rays in a coherent stream of ray packets should be around
64, e.g. 8 times 8-wide packets, or 4 times 16-wide packets. The rays inside each
packet should be grouped as coherent as possible.

8.4 Huge Page Support

It is recommended to use huge pages under Linux to increase rendering perfor-
mance. Embree supports 2MB huge pages under Windows, Linux, and macOS.
Under Linux huge page support is enabled by default, and under Windows and
macOS disabled by default. Huge page support can be enabled in Embree by
passing hugepages=1 to rtcNewDevice or disabled by passing hugepages=0 to
rtcNewDevice.

We recommend using 2MB huge pages with Embree under Linux as this im-
proves ray tracing performance by about 5-10%. Under Windows using huge
pages requires the application to run in elevated mode which is a security issue,
thus likely not an option for most use cases. Under macOS huge pages are rarely
available as memory tends to get quickly fragmented, thus we do not recommend
using huge pages on macOS.

8.4.1 HugePages under Linux
Linux supports transparent huge pages and explicit huge pages. To enable trans-
parent huge page support under Linux, execute the following as root:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

When transparent huge pages are enabled, the kernel tries to merge 4KB
pages to 2MB pages when possible as a background job. Many Linux distribu-
tions have transparent huge pages enabled by default. See the followingwebpage
for more information on transparent huge pages under Linux. In this mode each
application, including your rendering application based on Embree, will automat-
ically tend to use huge pages.

Using transparent huge pages, the transitioning from 4KB to 2MB pages
might take some time. For that reason Embree also supports allocating 2MB
pages directly when a huge page pool is configured. Such a pool can be config-
ured by writing some number of huge pages to allocate to /proc/sys/vm/nr_
overcommit_hugepages as root user. E.g. to configure 2GB of address space for
huge page allocation, execute the following as root:

echo 1000 > /proc/sys/vm/nr_overcommit_hugepages

See the following webpage for more information on huge pages under Linux.

8.4.2 HugePages underWindows
To use huge pages under Windows, the current user must have the “Lock pages
in memory” (SeLockMemoryPrivilege) assigned. This can be configured through
the “Local Security Policy” application, by adding a user to “Local Policies” ->
“User Rights Assignment” -> “Lock pages in memory”. You have to log out and
in again for this change to take effect.

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Performance Recommendations 185

Further, your application must be executed as an elevated process (“Run as
administrator”) and the “SeLockMemoryPrivilege” must be explicitly enabled by
your application. Example code on how to enable this privilege can be found
in the “common/sys/alloc.cpp” file of Embree. Alternatively, Embree will try
to enable this privilege when passing enable_selockmemoryprivilege=1 to
rtcNewDevice. Further, huge pages should be enabled in Embree by passing
hugepages=1 to rtcNewDevice.

When the system has been running for a while, physical memory gets frag-
mented, which can slow down the allocation of huge pages significantly under
Windows.

8.4.3 HugePages undermacOS
To use huge pages under macOS you have to pass hugepages=1 to rtcNewDe-
vice to enable that feature in Embree.

When the system has been running for a while, physical memory gets quickly
fragmented, and causes huge page allocations to fail. For this reason, huge pages
are not very useful under macOS in practice.

8.5 Avoid store-to-load forwarding issues with sin-
gle rays

We recommend to use a single SSE store to set up the org and tnear components,
and a single SSE store to set up the dir and time components of a single ray
(RTCRay type). Storing these values using scalar stores causes a store-to-load
forwarding penalty because Embree is reading these components using SSE loads
later on.

186

Chapter 9

Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how
Embree can be used and extended. There is a very basic minimal that can be
compiled as both C and C++, which should get new users started quickly. All
other tutorials exist in an ISPC and C++ version to demonstrate the two versions
of the API. Look for files named tutorialname_device.ispc for the ISPC im-
plementation of the tutorial, and files named tutorialname_device.cpp for
the single ray C++ version of the tutorial. To start the C++ version use the tu-
torialname executables, to start the ISPC version use the tutorialname_ispc
executables. All tutorials can print available command line options using the
--help command line parameter.

For all tutorials except minimal, you can select an initial camera using the
--vp (camera position), --vi (camera look-at point), --vu (camera up vector),
and --fov (vertical field of view) command line parameters:

./triangle_geometry --vp 10 10 10 --vi 0 0 0

You can select the initial window size using the --size command line pa-
rameter, or start the tutorials in full screen using the --fullscreen parameter:

./triangle_geometry --size 1024 1024

./triangle_geometry --fullscreen

The initialization string for the Embree device (rtcNewDevice call) can be
passed to the ray tracing core through the --rtcore command line parameter,
e.g.:

./triangle_geometry --rtcore verbose=2,threads=1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest. With
the left mouse button you can rotate around the center of interest (the point
initially set with --vi). Holding Control pressed while clicking the left mouse
button rotates the camera around its location. You can also use the arrow keys
for navigation.

You can use the following keys:

F1 Default shading
F2 Gray EyeLight shading
F3 Traces occlusion rays only.
F4 UV Coordinate visualization
F5 Geometry normal visualization
F6 Geometry ID visualization
F7 Geometry ID and Primitive ID visualization

Embree Tutorials 187

F8 Simple shading with 16 rays per pixel for benchmarking.
F9 Switches to render cost visualization. Pressing again reduces brightness.
F10 Switches to render cost visualization. Pressing again increases brightness.
f Enters or leaves full screen mode.
c Prints camera parameters.
ESC Exits the tutorial.
q Exits the tutorial.

9.1 Minimal

This tutorial is designed to get new users started with Embree. It can be compiled
as both C and C++. It demonstrates how to initialize a device and scene, and how
to intersect rays with the scene. There is no image output to keep the tutorial as
simple as possible.

Source Code

9.2 Triangle Geometry

This tutorial demonstrates the creation of a static cube and ground plane
using triangle meshes. It also demonstrates the use of the rtcIntersect1 and
rtcOccluded1 functions to render primary visibility and hard shadows. The
cube sides are colored based on the ID of the hit primitive.

Source Code

https://github.com/embree/embree/blob/master/tutorials/minimal/minimal.cpp
https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp

Embree Tutorials 188

9.3 Dynamic Scene

This tutorial demonstrates the creation of a dynamic scene, consisting of sev-
eral deforming spheres. Half of the spheres use the RTC_BUILD_QUALITY_REFIT
geometry build quality, which allows Embree to use a refitting strategy for these
spheres, the other half uses the RTC_BUILD_QUALITY_LOW geometry build qual-
ity, causing a high performance rebuild of their spatial data structure each frame.
The spheres are colored based on the ID of the hit sphere geometry.

Source Code

https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp
https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp

Embree Tutorials 189

9.4 Multi SceneGeometry

This tutorial demonstrates the creation of multiple scenes sharing the same
geometry objects. Here, three scenes are built. One with all the dynamic spheres
of the Dynamic Scene test and two others each with half. The ground plane is
shared by all three scenes. The space bar is used to cycle the scene chosen for
rendering.

Source Code

https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp

Embree Tutorials 190

9.5 User Geometry

This tutorial shows the use of user-defined geometry, to re-implement in-
stancing, and to add analytic spheres. A two-level scene is created, with a trian-
gle mesh as ground plane, and several user geometries that instance other scenes
with a small number of spheres of different kinds. The spheres are colored using
the instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry instanced in different ways can be distinguished.

Source Code

https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp

Embree Tutorials 191

9.6 Viewer

This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing
the index and vertex buffer with the application. It also demonstrates how to
support additional per-vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to work:

./viewer -i model.obj

Source Code

https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp
https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp

Embree Tutorials 192

9.7 StreamViewer

This tutorial is a simple OBJ viewer that demonstrates the use of ray streams.
You need to specify an OBJ file at the command line for this tutorial to work:

./viewer_stream -i model.obj

Source Code

https://github.com/embree/embree/blob/master/tutorials/viewer_stream/viewer_stream_device.cpp
https://github.com/embree/embree/blob/master/tutorials/viewer_stream/viewer_stream_device.cpp

Embree Tutorials 193

9.8 Intersection Filter

This tutorial demonstrates the use of filter callback functions to efficiently
implement transparent objects. The filter function used for primary rays lets the
ray pass through the geometry if it is entirely transparent. Otherwise, the shad-
ing loop handles the transparency properly, by potentially shooting secondary
rays. The filter function used for shadow rays accumulates the transparency of
all surfaces along the ray, and terminates traversal if an opaque occluder is hit.

Source Code

https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp
https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp

Embree Tutorials 194

9.9 InstancedGeometry

This tutorial demonstrates the in-build instancing feature of Embree, by in-
stancing a number of other scenes built from triangulated spheres. The spheres
are again colored using the instance ID and geometry ID of the hit sphere, to
demonstrate how the same geometry instanced in different ways can be distin-
guished.

Source Code

9.10 Multi Level Instancing

This tutorial demonstrates multi-level instancing, i.e., nesting instances into
instances. To enable the tutorial, set the compile-time variable EMBREE_MAX_
INSTANCE_LEVEL_COUNT to a value other than the default 1. This variable is
available in the code as RTC_MAX_INSTANCE_LEVEL_COUNT.

The renderer uses a basic path tracing approach, and the image will progres-
sively refine over time. There are two levels of instances in this scene: mul-

https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp

Embree Tutorials 195

tiple instances of the same tree nest instances of a twig. Intersections on up
to RTC_MAX_INSTANCE_LEVEL_COUNT nested levels of instances work out of the
box. Users may obtain the instance ID stack for a given hitpoint from the instID
member. During shading, the instance ID stack is used to accumulate normal
transformation matrices for each hit. The tutorial visualizes transformed nor-
mals as colors.

Source Code

9.11 Path Tracer

This tutorial is a simple path tracer, based on the viewer tutorial.
You need to specify an OBJ file and light source at the command line for this

tutorial to work:

./pathtracer -i model.obj --ambientlight 1 1 1

As example models we provide the “Austrian Imperial Crown” model by Mar-
tin Lubich and the “Asian Dragon” model from the Stanford 3D Scanning Repos-
itory.

crown.zip
asian_dragon.zip
To render these models execute the following:

./pathtracer -c crown/crown.ecs

./pathtracer -c asian_dragon/asian_dragon.ecs

Source Code

https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp
http://www.loramel.net
http://www.loramel.net
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/embree/models/releases/download/release/crown.zip
https://github.com/embree/models/releases/download/release/asian_dragon.zip
https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp

Embree Tutorials 196

9.12 Hair

This tutorial demonstrates the use of the hair geometry to render a hairball.
Source Code

https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp

Embree Tutorials 197

9.13 CurveGeometry

This tutorial demonstrates the use of the Linear Basis, B-Spline, and Catmull-
Rom curve geometries.

Source Code

https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp

Embree Tutorials 198

9.14 SubdivisionGeometry

This tutorial demonstrates the use of Catmull-Clark subdivision surfaces.
Source Code

9.15 Displacement Geometry

This tutorial demonstrates the use of Catmull-Clark subdivision surfaceswith
procedural displacement mapping using a constant edge tessellation level.

Source Code

https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp

Embree Tutorials 199

9.16 Grid Geometry

This tutorial demonstrates the use of the memory efficient grid primitive to
handle highly tessellated and displaced geometry.

Source Code

https://github.com/embree/embree/tree/master/tutorials/grid_geometry
https://github.com/embree/embree/tree/master/tutorials/grid_geometry

Embree Tutorials 200

9.17 Point Geometry

This tutorial demonstrates the use of the three representations of point ge-
ometry.

Source Code

https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp

Embree Tutorials 201

9.18 Motion Blur Geometry

This tutorial demonstrates rendering of motion blur using the multi-segment
motion blur feature. Shown is motion blur of a triangle mesh, quad mesh, subdi-
vision surface, line segments, hair geometry, Bézier curves, instantiated triangle
mesh where the instance moves, instantiated quad mesh where the instance and
the quads move, and user geometry.

The number of time steps used can be configured using the --time-steps
<int> and --time-steps2 <int> command line parameters, and the geometry
can be rendered at a specific time using the the --time <float> command line
parameter.

Source Code

https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp

Embree Tutorials 202

9.19 QuaternionMotion Blur

This tutorial demonstrates rendering of motion blur using quaternion inter-
polation. Shown is motion blur using spherical linear interpolation of the rota-
tional component of the instance transformation on the left and simple linear
interpolation of the instance transformation on the right. The number of time
steps can be modified as well.

Source Code

https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp
https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp

Embree Tutorials 203

9.20 Interpolation

This tutorial demonstrates interpolation of user-defined per-vertex data.
Source Code

https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp
https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp

Embree Tutorials 204

9.21 Closest Point

This tutorial demonstrates a use-case of the point query API. The scene con-
sists of a simple collection of objects that are instanced and for several point in
the scene (red points) the closest point on the surfaces of the scene are computed
(white points). The closest point functionality is implemented for Embree inter-
nal and for user-defined instancing. The tutorial also illustrates how to handle
instance transformations that are not similarity transforms.

Source Code

https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp
https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp

Embree Tutorials 205

9.22 Voronoi

This tutorial demonstrates how to implement nearest neighbour lookups us-
ing the point query API. Several colored points are located on a plane and the
corresponding voroni regions are illustrated.

Source Code

https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp
https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp

Embree Tutorials 206

9.23 Collision Detection

This tutorial demonstrates how to implement collision detection using the
collide API. A simple cloth solver is setup to collide with a sphere.

The cloth can be reset with the space bar. The sim stepped once with n and
continuous simulation started and paused with p.

Source Code

9.24 BVHBuilder

This tutorial demonstrates how to use the templated hierarchy builders of Em-
bree to build a bounding volume hierarchy with a user-defined memory layout
using a high-quality SAH builder using spatial splits, a standard SAH builder,
and a very fast Morton builder.

Source Code

9.25 BVHAccess

This tutorial demonstrates how to access the internal triangle acceleration struc-
ture build by Embree. Please be aware that the internal Embree data structures
might change between Embree updates.

Source Code

https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp
https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp
https://github.com/embree/embree/blob/master/tutorials/bvh_builder/bvh_builder_device.cpp
https://github.com/embree/embree/blob/master/tutorials/bvh_access/bvh_access.cpp

Embree Tutorials 207

9.26 Find Embree

This tutorial demonstrates how to use the FIND_PACKAGE CMake feature to use
an installed Embree. Under Linux and macOS the tutorial finds the Embree
installation automatically, under Windows the embree_DIR CMake variable
must be set to the following folder of the Embree installation: C:\Program
Files\Intel\Embree3.

Source Code

9.27 Next Hit

This tutorial demonstrates how to robustly enumerate all hits along the ray using
multiple ray queries and an intersection filter function. To improve performance,
the tutorial also supports collecting the next N hits in a single ray query.

Source Code

https://github.com/embree/embree/blob/master/tutorials/find_embree/CMakeLists.txt
https://github.com/embree/embree/blob/master/tutorials/next_hit/next_hit_device.cpp

Embree Tutorials 208

© 2009–2020 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.

https://www.intel.com/PerformanceIndex

	Embree Overview
	Supported Platforms
	Version History

	Installation of Embree
	Windows MSI Installer
	Windows ZIP File
	Linux tar.gz Files
	macOS PKG Installer
	macOS ZIP file

	Compiling Embree
	Linux and macOS
	Windows
	CMake Configuration

	Using Embree
	Embree API
	Device Object
	Scene Object
	Geometry Object
	Ray Queries
	Point Queries
	Collision Detection
	Miscellaneous

	Upgrading from Embree 2 to Embree 3
	Device
	Scene
	Geometry
	Buffers
	Miscellaneous

	Embree API Reference
	rtcNewDevice
	rtcRetainDevice
	rtcReleaseDevice
	rtcGetDeviceProperty
	rtcGetDeviceError
	rtcSetDeviceErrorFunction
	rtcSetDeviceMemoryMonitorFunction
	rtcNewScene
	rtcGetSceneDevice
	rtcRetainScene
	rtcReleaseScene
	rtcAttachGeometry
	rtcAttachGeometryByID
	rtcDetachGeometry
	rtcGetGeometry
	rtcGetGeometryThreadSafe
	rtcCommitScene
	rtcJoinCommitScene
	rtcSetSceneProgressMonitorFunction
	rtcSetSceneBuildQuality
	rtcSetSceneFlags
	rtcGetSceneFlags
	rtcGetSceneBounds
	rtcGetSceneLinearBounds
	rtcNewGeometry
	RTC_GEOMETRY_TYPE_TRIANGLE
	RTC_GEOMETRY_TYPE_QUAD
	RTC_GEOMETRY_TYPE_GRID
	RTC_GEOMETRY_TYPE_SUBDIVISION
	RTC_GEOMETRY_TYPE_CURVE
	RTC_GEOMETRY_TYPE_POINT
	RTC_GEOMETRY_TYPE_USER
	RTC_GEOMETRY_TYPE_INSTANCE
	RTCCurveFlags
	rtcRetainGeometry
	rtcReleaseGeometry
	rtcCommitGeometry
	rtcEnableGeometry
	rtcDisableGeometry
	rtcSetGeometryTimeStepCount
	rtcSetGeometryTimeRange
	rtcSetGeometryVertexAttributeCount
	rtcSetGeometryMask
	rtcSetGeometryBuildQuality
	rtcSetGeometryBuffer
	rtcSetSharedGeometryBuffer
	rtcSetNewGeometryBuffer
	RTCFormat
	RTCBufferType
	rtcGetGeometryBufferData
	rtcUpdateGeometryBuffer
	rtcSetGeometryIntersectFilterFunction
	rtcSetGeometryOccludedFilterFunction
	rtcFilterIntersection
	rtcFilterOcclusion
	rtcSetGeometryUserData
	rtcGetGeometryUserData
	rtcSetGeometryUserPrimitiveCount
	rtcSetGeometryBoundsFunction
	rtcSetGeometryIntersectFunction
	rtcSetGeometryOccludedFunction
	rtcSetGeometryPointQueryFunction
	rtcSetGeometryInstancedScene
	rtcSetGeometryTransform
	rtcSetGeometryTransformQuaternion
	rtcGetGeometryTransform
	rtcSetGeometryTessellationRate
	rtcSetGeometryTopologyCount
	rtcSetGeometrySubdivisionMode
	rtcSetGeometryVertexAttributeTopology
	rtcSetGeometryDisplacementFunction
	rtcGetGeometryFirstHalfEdge
	rtcGetGeometryFace
	rtcGetGeometryNextHalfEdge
	rtcGetGeometryPreviousHalfEdge
	rtcGetGeometryOppositeHalfEdge
	rtcInterpolate
	rtcInterpolateN
	rtcNewBuffer
	rtcNewSharedBuffer
	rtcRetainBuffer
	rtcReleaseBuffer
	rtcGetBufferData
	RTCRay
	RTCHit
	RTCRayHit
	RTCRayN
	RTCHitN
	RTCRayHitN
	rtcInitIntersectContext
	rtcIntersect1
	rtcOccluded1
	rtcIntersect4/8/16
	rtcOccluded4/8/16
	rtcIntersect1M
	rtcOccluded1M
	rtcIntersect1Mp
	rtcOccluded1Mp
	rtcIntersectNM
	rtcOccludedNM
	rtcIntersectNp
	rtcOccludedNp
	rtcInitPointQueryContext
	rtcPointQuery
	rtcCollide
	rtcNewBVH
	rtcRetainBVH
	rtcReleaseBVH
	rtcBuildBVH
	RTCQuaternionDecomposition
	rtcInitQuaternionDecomposition

	Performance Recommendations
	MXCSR control and status register
	Thread Creation and Affinity Settings
	Fast Coherent Rays
	Huge Page Support
	Avoid store-to-load forwarding issues with single rays

	Embree Tutorials
	Minimal
	Triangle Geometry
	Dynamic Scene
	Multi Scene Geometry
	User Geometry
	Viewer
	Stream Viewer
	Intersection Filter
	Instanced Geometry
	Multi Level Instancing
	Path Tracer
	Hair
	Curve Geometry
	Subdivision Geometry
	Displacement Geometry
	Grid Geometry
	Point Geometry
	Motion Blur Geometry
	Quaternion Motion Blur
	Interpolation
	Closest Point
	Voronoi
	Collision Detection
	BVH Builder
	BVH Access
	Find Embree
	Next Hit

