
JavaTM 2 Enterprise Edition
Deployment API

Specification, Version 1.1

Rebecca Searls

Part No. 8xx-xxxx-xx
August 17 2002, Version 1.1

 Final Release

ii

iii
Java™ 2 Platform, Enterprise Edition Deployment API Specification ("Specification")

Version: 1.1

Status: FCS

Release: November, 24, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,

limited license (without the right to sublicense), under the Sun’s applicable intellectual property rights to view,

download, use and reproduce the Specification only for the purpose of internal evaluation, which shall be

understood to include developing applications intended to run on an implementation of the Specification

provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license

(without the right to sublicense) under any applicable copyrights or patent rights it may have in the

Specification to create and/or distribute an Independent Implementation of the Specification that: (i) fully

implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset,

superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes,

Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by

the Specification or Specifications being implemented; and (iii) passes the TCK (including satisfying the

requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly

conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through"

requirements in any license You grant concerning the use of your Independent Implementation or products

derived from it. However, except with respect to implementations of the Specification (and products derived

from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or

otherwise pass through to your licensees any licenses under Sun’s applicable intellectual property rights; nor

(b) authorize your licensees to make any claims concerning their implementation’s compliance with the Spec

in question.

For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the

Specification that neither derives from any of Sun’s source code or binary code materials nor, except with an

appropriate and separate license from Sun, includes any of Sun’s source code or binary code materials; and

"Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",

"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java

Community Process, or any recognized successors or replacements thereof. This Agreement will terminate

immediately without notice from Sun if you fail to comply with any material provision of or act outside the

scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is

granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2EE, J2SE, JavaBeans, Java Naming and

Directory Interface, Enterprise JavaBeans, Java Compatible and the Java Coffee Cup Logo are trademarks or

registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

iv
DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES,

EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT THE

CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR

IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,

COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment

to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE

INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE

IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED

IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by

the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE

FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR

FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY

FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/

OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from:

(i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean room

implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to you are

incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.

Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Specification

and accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R.

227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and

12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your

use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i)

agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a

perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through

multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any

purpose related to the Specification and future versions, implementations, and test suites thereof.

(LFI#136265/Form ID#011801)

v

. . 1
 . . 2

 . 2
. 3
. . 3
 . 4
. . 4

. .

. . 7
. . 8
. . 8

. . 9

. . 9
. 10
10
. 14
15

. 15
. 15
. 16
. . 19
. 19
. 19
. 20
20

. 21
. 22
24
25
25
n
. 30
0

1 J2EE™ Deployment API .1
1.1 Overview.
1.2 Scope. .

1.2.1 Relationship to the J2EE Management Specification
(JSR-77). .

1.2.2 Replacing a J2EE Application.
1.3 Organization .
1.4 Object Interaction Diagram Notation .
1.5 Acknowledgments .

2 Roles. 7
2.1 J2EE Product Provider .
2.2 Tool Provider .
2.3 Deployer .

3 Interface Overview. .9
3.1 Tool Provider Interfaces .

3.1.1 javax.enterprise.deploy.model.exceptions package. .
3.2 Tool Provider Classes .
3.3 Tool Provider Interfaces Diagrams. .
3.4 J2EE Product Provider Interfaces.

3.4.1 javax.enterprise.deploy.spi.factories package
3.4.2 javax.enterprise.deploy.spi.status package
3.4.3 javax.enterprise.deploy.spi.exceptions package

3.5 J2EE Product Provider Interfaces Diagram
3.6 Shared Classes .

3.6.1 javax.enterprise.deploy.shared package
3.6.2 javax.enterprise.deploy.shared.factories package . . .

3.7 Environment Requirements .
3.7.1 Tool’s Security Permission Set

4 DeploymentManager. .21
4.1 DeploymentManager Requirements .
4.2 DeploymentManager Methods .
4.3 Starting and Stopping Applications .
4.4 Internationalization .
4.5 Object Interaction Diagrams for DeploymentManager
4.6 DeploymentManager and the J2EE Management Specificatio

(JSR 77) .
4.6.1 Listing Deployed Modules . 3

vi

30

31
31
34

36
37
38
38
38
39
39
0

. 40
41
43
45
47

. 48
51

. 54

. 55

. 55

. 59

61
R

. 62

. 64
. 64
64
65
65
4.6.2 Module Start and Stop. .

5 Deployment Configuration Components31
5.1 Runtime Configuration Components .

5.1.1 Deployment Configuration Beans
5.1.2 Deployment Descriptor Beans.

5.2 Multiple Deployment Descriptor Files.
5.3 UI Contract between Tool and Server Plugin.
5.4 ModuleType Enumeration Objects. .
5.5 Deployment Descriptor Document Version

5.5.1 DTD Document .
5.5.2 XML Schema Document. .

5.6 DConfigBean Version .
5.6.1 DConfigBeanVersionType Enumeration Objects 4

5.7 XPath Syntax .
5.7.1 AbsoluteLocationPath Syntax
5.7.2 RelativeLocationPath Syntax
5.7.3 Multiple Namespaces .

5.8 Client Applications. .
5.9 Object Interaction Diagrams for Deployment Configuration

Beans .
5.9.1 Restore Configuration Beans.

6 Packaging. .53
6.1 Accessing a server plugin.

7 Deployment Target .55
7.1 Target Methods.
7.2 Target Examples.
7.3 Target and the J2EE Management Specification (JSR 77) . .

8 TargetModuleID .61
8.1 TargetModuleID Methods .
8.2 TargetModuleID and the J2EE Management Specification (JS

77).

9 ProgressObject .63
9.1 ProgressObject Methods.
9.2 DeploymentStatus Interface .

9.2.1 Deployment Command Enumeration Objects.
9.2.2 Deployment Status Enumeration Objects
9.2.3 Progress Action Enumeration Objects

vii

. 65
66
66
. 66
R
. 69

. 71
71
72
. 72
73
73
ry

 . 79
 . 80
9.2.4 Deployment Status Message
9.2.5 DeploymentStatus Methods. .

9.3 ClientConfiguration Methods .
9.4 Object Interaction Diagrams for a ProgressObject
9.5 ProgressObject and the J2EE Management Specification (JS

77) .

10 DeploymentManager Discovery .71
10.1 DeploymentFactory .

10.1.1 DeploymentFactory Methods
10.1.2 DeploymentFactory Discovery

10.2 DeploymentFactoryManager .
10.2.1 DeploymentFactoryManager Methods
10.2.2 URI .

10.3 Object Interaction Diagrams for DeploymentManager Discove
74

11 Exceptions .79
11.1 jaxax.enterprise.deploy.spi.exceptions package
11.2 javax.enterprise.deploy.model.exceptions package

viii

1

I

e

he
r

arn

th

 was
C H A P T E R1
J2EE™ Deployment AP

This is the specification of the Java ™2 Enterprise Edition Deployment API. Th
Deployment architecture defines the contracts that enable tools from multiple
providers to configure and deploy applications on any J2EE platform product. T
contracts define a uniform model between tools and J2EE platform products fo
application deployment configuration and deployment. The Deployment
architecture makes it easier to deploy applications: Deployers do not have to le
all the features of many different J2EE deployment tools in order to deploy an
application on many different J2EE platform products.

1.1 Overview

The Deployment architecture defines implementation requirements for bo
tools and J2EE platform products. The primary responsibilities of a tool are

• To access the J2EE application archive.

• To display for editing the deployment configuration information retrieved
from the J2EE platform product.

The J2EE platform product’s primary responsibilities are to

• Generate the product-specific deployment configuration information.

• To deploy the application.

The Deployment architecture uses the JavaBeans™ architecture for the
components that present the dynamic deployment configuration information
required by a provider’s J2EE platform product. The JavaBeans architecture

2

t of
ards
ps.

t
EE

n-

ed in

odel

d is
ill

his
chosen because of its versatility in providing both simple and complex
components, as well as its platform neutrality. Beans enable the developmen
simple property sheets and editors, as well as sophisticated customization wiz
for guiding the Deployer through the application deployment configuration ste

1.2 Scope

The API in this specification describes

• A minimum set of facilities, called a plugin, that all J2EE Platform Produc
Providers must provide to Deployment Tool Providers so that portable J2
applications can be deployed to the Product Provider’s platform

• A minimum set of facilities that all Tool Providers must provide in order to i
teract with the Product Provider’s plugin.

This API describes two of the three deployment processes described in (the
J2EE platform specification), installation and configuration. The third process,
execution, is left to the Platform Product Provider.

We expect that J2EE product providers will extend these base facilities in
their own deployment tools, thus allowing competition with other products on
various quality of service aspects. Platform Product Providers may choose to
make their extensions available to other tool providers or not.

1.2.1 Relationship to the J2EE Management Specification (JSR-
77)

Deployment is an integral part of platform management. It depends on
management functionality to start deployed applications, stop deployed
applications, report the status of applications, and the like. We determined,
however, that J2EE platform deployment and management should be address
separate JSRs, because of the ways in which these two topics need to be
addressed. J2EE platform management needs to be defined as a metadata m
and not as an API in order to best address the issues of interoperability with
different management systems and protocols. Deployment, on the other han
best addressed as an API. It is expected that the Platform Product Provider w
integrate the Deployment API with its management model implementation. T

3

ious
s it

rm

ery
an

ors

r-

ili-

a-
n.

 serv-

e-

port

cha-

nt
specification describes its interactions with the J2EE Platform Management
Model.

1.2.2 Replacing a J2EE Application

We recognize that over time applications evolve and need updates of var
types. The J2EE specification does not currently address this issue, nor doe
prohibit the Platform Product Providers from doing so.

We believe that this API provides a sufficient infrastructure to enable Platfo
Product Providers to continue providing application update solutions that are
appropriate for their implementations. In addition this specification defines a v
basic type of application redeployment. A redeploy method is provided. It is
optional feature for the Platform Product Provider to implement.

1.3 Organization

• Chapter 2, “Roles”, describes the responsibilities of the various implement
of this specification.

• Chapter 3, “Interface Overview”, provides a short description of each inte
face in the API.

• Chapter 4, "DeploymentManager", discusses the functions and responsib
ties of the deployment manager.

• Chapter 5, "Deployment Configuration Components", describes the mech
nisms for creating and collecting the deployment configuration informatio

• Chapter 6, "Deployment Target", describes an object used to represent a
er.

• Chapter 7, "DeploymentTargetID", describes a structure used to identify d
ployed applications.

• Chapter 8, "ProgressObject", describes the object used to monitor and re
the status of a deployment action.

• Chapter 9, "DeploymentManager Discovery", describes the discovery me
nism for acquiring a platform provider’s DeploymentManager.

• Chapter 10, “Exceptions”, describes the exception types of the Deployme

4

The
eral

 but

rm
s.

 as
ups
API.

1.4 Object Interaction Diagram Notation

Several object interaction diagrams (OID) are presented in this document.
diagrams contain a mix of API class names and method signatures, with gen
descriptive information about the interactions. The descriptive information
identifies vendor-specific facilities that are needed to support the deployment
activities, and additional actions that need to occur in relation to the diagram
whose details are outside the scope of the drawing.

The notation used in the diagrams is as follows:

• Plain font text is used for class names and method signatures.

• Italic font text is used to denote roles such as Deployer, Tool, J2EE Platfo
Product and to note vendor specific facilities and describe general action

• A plain text word in a box represents a class.

1.5 Acknowledgments

This specification was developed under the Java Community Process 2.0
JSR-88. It includes contributions from many partner companies, as well as gro
at Sun. We would like to thank the members of the JSR-88 Expert Group in
particular for their contributions:

■ Skylight Systems - Aaron Mulder

■ WebGain - Mark Romano and Omar Tazi

■ Forte - George Finklang

■ Oracle - Gerald Ingalls

■ SilverStream - Helen Herold

■ Sybase - David Brandow

■ BEA- Mark Spotswood and Reto Kramer and Vadim Draluk

5

■ iPlanet - Byron Nevins and Darpan Dinker

■ IBM - Michael Fraenkel and Leigh Williamson

■ Verge Technologies Group Inc - Jason Westra

■ IONA - David Hayes

6

2

t

ndor.

of

in.

nt
Roles

This chapter describes the roles and responsibilities specific to the deploymen
architecture.

2.1 J2EE Product Provider

The J2EE Product Provider is the implementor and supplier of a J2EE
compliant product. A J2EE Product Provider is typically an operating system
vendor, database system vendor, application server vendor, or web server ve

The J2EE Product Provider is responsible for providing an implementation
the interfaces defined in thejavax.enterprise.deploy.spi package . A vendor’s
implementation of this package will be referred to as the plugin or server plug

The product must be able to communicate with any third-party deployme
tool that adheres to this specification.

The Product Provider is responsible for implementing

• A deployment manager.

• Deployment factories, for accessing their product’s deployment manager.

• The deployment configuration components for their product.
7

8

an
he

ted

E
d by

 on

y
red

for-

 run-
2.2 Tool Provider

The Tool Provider is the implementor and supplier of software tools that c
be used in the development and packaging of application components, and t
deployment, management, or monitoring of applications. A Tool Provider is
typically a J2EE Product Provider that provides tools for its product, an Integra
Development Environment (IDE) Provider, or a specialty tool provider.

The Tool Provider is responsible for providing an implementation of the
interfaces defined in thejavax.enterprise.deploy.model package. In addition,
the tool must provide a means to discover and interact with a designated J2E
product’s deployment manager and to display the configuration beans provide
it.

2.3 Deployer

The Deployer is responsible for configuring and deploying J2EE modules
a specific J2EE product. Deployment is typically a three-stage process:

1. Configuration: The Deployer follows the assembly instructions provided b
the Application Assembler and resolves any external dependencies decla
by the Application Component Provider.

2. Distribution: The application archive and the deployment configuration in
mation are installed on the servers via the Deployment API.

3. Start execution: The Deployer requests the server to start the application
ning.

9

Tool
d by

on.

is

ex-
an

-

3
Interface Overview

The Deployment API consists of eight packages. Two are implemented by the
Provider. Four are implemented by the J2EE Product Provider. Two are provide
this API.

This section provides a quick overview of the interfaces. More detail is
provided in the following chapters and in the accompanying API documentati

3.1 Tool Provider Interfaces

The interfaces for the Tool Provider are in the package,javax.enter-

prise.deploy.model.

• DeployableObjectrepresents a J2EE deployable module, an EAR, JAR,
WAR, or RAR archive.

• J2eeApplicationObjectrepresents a J2EE application, an EAR archive. It
a special type ofDeployableObject.

• DDBeanis a component used for introspecting a deployment descriptor. It
tracts deployment descriptor information on behalf of the server plugin. It c
represent all or part of a module’s deployment descriptor.

• DDBeanRootis the topmostDDBean for a given module’s deployment de-
scriptor.

• XpathListener receivesXpathEvents.

3.1.1 javax.enterprise.deploy.model.exceptions package

• DDBeanCreateExceptionis thrown when a DDBean object could not be cre
ated for the root of a named XML instance document.

10

e to
s of

s:
.

R

ean
ML
r

3.2 Tool Provider Classes

• XpathEvent is an event that identifiesDDBean objects being added, removed,
or changed in a deployment configuration.

3.3 Tool Provider Interfaces Diagrams

Figure 3.1 shows the relationship of the primary interfaces described abov
each other and to a deployment tool. The figure shows the logical relationship
the elements; it isnotmeant to imply a physical partitioning of elements on
machines, into processes, or address spaces.

In figure 3.1 the tool is preparing to deploy the J2EE applicationmystore.ear.
This EAR file contains a deployment descriptor for itself and two sub-module
customer.jar, an EJB module:storeFront.war, a WEB module as a web service

The tool creates aJ2eeApplicationObject and associates themystore.ear
file with it. The J2eeApplicationObject’s function is to provide access to the EA
file’s contents. It is an abstract container for its sub-modules and deployment
descriptor.

A J2EE module contains one or more deployment descriptors. Each
deployment descriptor has associated with it oneDDBeanRoot bean. TheDDBean-
Root bean is the reference to the deployment descriptor root.

Zero or moreDDBean objects may be associated with the deployment
descriptor. ADDBean represents a fragment of a deployment descriptor. The b
contains the text of an XML tag. The server plugin code designates which X
tag information is to be extracted. For example the Platform Product Provide
might request the information for all theenv-entry XML tags for all the session
beans in the EJB deployment descriptor. ADDBean would be provided for each
env-entry tag found in the file. TheDDBean would contain the text for theenv-
entry.

The primary function of theDDBeanRoot andDDBean beans are to extract data
from the deployment descriptor on behalf of the Platform Product Provider’s
code.

11
Figure 3.1 J2EE Application

12
In figure 3.2 the tool is preparing to deploy a stand-alone J2EE module,
storeFront.war. It creates aDeployableObject object instead of a
J2eeApplicationObject object because it only needs to represent a single
module.

13
Figure 3.2 J2EE Standalone Module

14

e

t-

c

d-
all

d a
 on

n
le
3.4 J2EE Product Provider Interfaces

The interfaces for the J2EE Product Provider are contained in the packag
javax.enterprise.deploy.spi.

• DeploymentManageris the access point for the Tool Provider to a J2EE Pla
form Product’s deployment functionality.

• DeploymentConfiguration is the top-level component for deployment con-
figuration information. It is a container for all J2EE platform product-specifi
configuration objects.

• DConfigBeanis a JavaBeans component used for conveying platform-pro
uct-specific deployment configuration information to the tool. It represents
or part of a deployment descriptor.

• DConfigBeanRootis the topmostDConfigBean for a given deployment de-
scriptor.

• Target represents an association between a server or group of servers an
location to deposit a J2EE module that has been properly prepared to run
the server or servers.

• TargetModuleID is a unique identifier associated with a deployed applicatio
module. EachTargetModuleID represents a single module deployed to a sing
server target.

15

-

e-

 ac-

ta-

e-

lat-
3.4.1 javax.enterprise.deploy.spi.factories package

• DeploymentFactoryis a deployment driver for a J2EE platform product. It re
turns aDeploymentManager object that represents a connection to a specific
J2EE platform product.

3.4.2 javax.enterprise.deploy.spi.status package

• ProgressObject tracks and reports the progress of potentially long-lived d
ployment activities.

• ProgressEvent is an event that indicates a status change in a deployment
tivity.

• DeploymentStatusis an object that contains detailed information about a s
tus event.

• ProgressListener receives progress events.

• ClientConfiguration is a JavaBeans object that installs, configures and ex
cutes an application client.

3.4.3 javax.enterprise.deploy.spi.exceptions package

• ConfigurationException is thrown when theConfigBean could not be creat-
ed.

• DeploymentManagerCreationExceptionis thrown when aDeploymentMan-
ager could not be created by theDeploymentFactory.

• InvalidModuleException is thrown when the J2EE archive module type is
unknown by theDeploymentManager.

• TargetException is thrown when theTarget is unknown by theDeployment-
Manager.

• BeanNotFoundExceptionis thrown when the childConfigBean could not be
found by the parentConfigBean.

• DConfigBeanVersionUnsupportedException is thrown when the DConfig-
Beans for a particular J2EE platform verions can not be provided by the p
form.

16

al

 tool

’s
ng
eID
he

f a
ram
• ClientExecuteException is thrown when the application client run environ-
ment could not be setup properly.

3.5 J2EE Product Provider Interfaces Diagram

Figure 3.3 shows the relationship of the primary interfaces described in
section 3.2 to each other and to a J2EE product . This figure shows the logic
relationships of the elements; it isnotmeant to imply a physical partitioning of
elements into processes, address spaces or on machines.

In figure 3.3, theDeploymentFactory is an object which a tool discovers and
uses to retrieves an instance of the J2EE product’sDeploymentManager object.

TheDeploymentManager provides the J2EE product’s deployment
functionality. It is the intermediary between the tool and the server.

A Target object is a reference to a server. It can represent a specific
application server installation on a single host or it can represent a cluster of
servers over many hosts. ATarget represents an atomic element; for example a
Target can represent a cluster of servers as a single deployable target. The
and Deployer need not know the server configuration that aTarget represents. A
DeploymentManager can have many deployment targets.

A TargetModuleID object is a reference to a J2EE module that has been
deployed to a Target. A module’s TargetModuleID is unique within the platform
domain. The association of a TargetModuleID with a module exists only as lo
as the module is deployed. Once the module is undeployed the TargetModul
can be reassigned. The TargetModuleID is used by the Deployer to identify t
module on which the DeploymentManager is to perform administrative
operations, such as start and stop.

A ProgressObject provides a means to monitor and report on the status o
deployment operation. There are several operations not depicted in this diag
for whichProgressObject objects are provided.

One of the functions of theDeploymentManager is to configure J2EE modules
for deployment. Some of the configuration information requires input from the
Deployer. TheDConfigBean objects provide the list of external references and

17

ule

r

e
es
other deployment information the platform needs resolved in order for the mod
to be deployed.

TheDeploymentConfiguration object is a container for all theDConfigBeans
created during a deployment session. ADConfigBeanRoot object is associated
with a deployment descriptor via theDDBeanRoot object. ADConfigBeanRoot

object can have zero or moreDConfigBean child objects.

A DConfigBean represents deployment information that is associated with
XML tag (see section 5.2) information in a deployment descriptor. ADConfigBean

provides zero or more XPaths that identify the XML information it requires fo
evaluation. ADConfigBean is associated with aDDBean (see section 3.3) provided
by a tool. ADConfigBean object can have zero or moreDConfigBean child
objects.

The primary function of theDConfigBeanRoot andDConfigBean beans is to
tell the tool what data it needs from the deployment descriptor and to allow th
Deployer to edit the deployment configuration information the platform requir
for the J2EE module.

18

19

duct

-

n

-
vid-
Figure 3.3 Product Provider Interfaces Diagram

3.6 Shared Classes

There are several constants that both the Tool Provider and Platform Pro
Provider use. These constants have been grouped into four classes and are
provided in the packagejavax.enterprise.deploy.shared.

3.6.1 javax.enterprise.deploy.shared package

• ModuleType provides values used to identify the J2EE module type repre
sented by aDeployableObject instance.

• DConfigBeanVersionTypeprovides values used to identify the J2EE versio
for which the deployment descriptor beans and deployment configuration
beans where compiled.

• CommandType provides values use byDeploymentStatus to identify the de-
ployment operation it represents.

• StateTypeprovides values use byDeploymentStatus to identify the state of
the deployment operation.

• ActionType provides values use byDeploymentStatus to identify if a cancel
or stop action on the current operation is being performed.

3.6.2 javax.enterprise.deploy.shared.factories package

• DeploymentFactoryManageris a central registry for DeploymentFactory ob
jects. The tool discovers the DeploymentFactory objects in a Product Pro
er’s supplied JAR file and registers them with the DeploymentFactory-

20

ires

es
ava

tion

in
.

Manager. The tool contacts the DeploymentFactoryManager when it requ
a DeploymentManager.

3.7 Environment Requirements

Each version of the Java 2 Platform Enterprise Edition Specification defin
the Java Compatible™ runtime environment it requires. It is a version of the J
2 Platform, Standard Edition (J2SE). This specification requires its runtime
environment to be the same J2SE edition the platform requires. This informa
can be found in the platform specification in the section titled, "Container
Requirements".

Tools must be able to access theDeploymentManager, DConfigBeans and
helper classes through the classpath or via a classloader.

3.7.1 Tool’s Security Permission Set

TheDeploymentManager must have a minimum set of security permissions
the tool’s environment in order to perform its functions. They are listed below

TABLE 3-1 Security Permission Set

Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.net.SocketPermission * connect

java.net.SocketPermission localhost:1024- accept,listen

java.io.FilePermission * read/write

java.util.PropertyPermission * read

21

r

ed
’s

t.

le

ra-
in-

lled,
4
DeploymentManage

TheDeploymentManager is a service that enables J2EE applications to be deploy
to J2EE platform products . It is a deployment tool’s access point to a product
deployment functionality. TheDeploymentManager provides administrative
operations for

• Configuring an application.

• Distributing an application.

• Starting the application.

• Stopping the application

• Undeploying the application.

4.1 DeploymentManager Requirements

■ At least oneDeploymentManager object must be provided per J2EE produc

■ TheDeploymentManagermust be able to distribute a configured J2EE modu
to the designated targets.

■ A DeploymentManager can run eitherconnected toor disconnected from its
J2EE product. ADeploymentManager running disconnected from its J2EE
product can only configure modules but not perform administrative ope
tions. It might not have access to any product resources. If any of the adm
istrative operations, distribute, start, stop, undeploy, or redeploy are ca
anIllegalStateException must be thrown. A disconnectedDeployment-
Manager is acquired by calling the single argument methodDeploymentFac-

tory.getDisconnectedDeploymentManager(name).

22

t
d

in
all

ol

ed
any

n

on
es
ives.

s-
.

-

he

n

ion

nd
A connectedDeploymentManager is associated with a specific J2EE produc
instance. It is identified by a URL and may require a valid user name an
password. ThisDeploymentManager can use the product resources to assist
the resolution of deployment configuration information and can execute
administrative operations.

A DeploymentManager running in connected mode can be notified by the to
to run in disconnected mode. This notification signals to theDeploymentMan-

ager that it may release any J2EE resource connections it had establish
during deployment configuration and clean up resources. It should allow
active operations to finish processing. TheDeploymentManager must throw
anIllegalStateException if any administrative operations are called whe
running in disconnected mode.

■ TheDeploymentManager processes only properly packaged J2EE applicati
or stand-alone module archives (EAR, JAR, WAR, and RAR) files. It do
not participate in the predeployment assembly or packaging of the arch

4.2 DeploymentManager Methods

■ getTargetsreturns the list of server targets to which thisDeploymentManager

supports deployment.

■ getAvailableModulesreturns the list of all J2EE modules available on a de
ignated server target. The module may or may not currently be running

■ getRunningModulesreturns the list of all J2EE modules currently running
on a designated target server.

■ getNonRunningModules returns the list of all J2EE modules currently de
ployed but not running on a designated target server.

■ createConfiguration returns the object that can evaluate and generate t
J2EE product’s application runtime configuration information.

■ distribute moves the complete deployment bundle, module, configuratio
data and any additional generated code to the target.

■ start makes an application runnable and available to clients. This operat
is valid forTargetModuleIDs that represent a root module. A rootTargetMod-

uleID has no parent. The rootTargetModuleID module and all its child mod-
ules will be started. A childTargetModuleID module cannot be individually
started. If the application is currently running no action should be taken a

23

 this

op-

com-

or

e-
hen

li-
.

d
on
up-

the
 cli-

. A
nd

nly

he
to

-
tab-
no error should be reported. The start operation is complete only when
action has been performed for all the modules.

■ stopmakes a running application unavailable to clients and stopped. This
eration is valid forTargetModuleIDs that represent a root module. A root
TargetModuleID has no parent. The rootTargetModuleID module and all its
child modules will be stopped. A childTargetModuleID module cannot be in-
dividually stopped. If the application is currently not running, no action
should be taken and no error should be reported. The stop operation is
plete only when this action has been performed for all the modules.

■ undeployremoves the application from the target. This operation is valid f
TargetModuleIDs that represent a root module. A rootTargetModuleID has
no parent. The rootTargetModuleID module and all its child modules will be
undeployed. A childTargetModuleID module cannot be undeployed. The
rootTargetModuleID module and all its child modules must be stopped b
fore they can be undeployed. The undeploy operation is complete only w
this action has been performed for all the modules.

■ isRedeploySupporteddesignates whether this J2EE product provides app
cation redeployment functionality. A value of true means it is supported

■ redeploy is anoptionaloperation. Redeploy replaces a currently deploye
application with an updated version. The runtime configuration informati
for the updated application must remain identical to the application it is
dating.

When an application update is redeployed, any transition of clients from
existing application to the application update must be transparent to the
ent.

This operation is valid for TargetModuleIDs that represent a root module
root TargetModuleID has no parent. The root TargetModuleID module a
all its child modules will be redeployed. A child TargetModuleID module
cannot be individually redeployed. The redeploy operation is complete o
when this action has been performed for all the modules.

■ releasesignals to theDeploymentManager that the tool does not need it to
continue running connected to the J2EE product. This is a signal from t
tool that it wants to run in disconnected mode or that the tool is preparing
shutdown.

When release is called, theDeploymentManager cannot accept any new oper
ation requests. It can release any J2EE resource connections it had es

24

ld

a-

-

es

a-

-
rns

ut
ing
rt

o
wn
 is
nts
lished during deployment configuration and clean up resources. It shou
finish processing any active operations.

■ getDefaultLocale returns the default locale supported by this implement
tion. A default locale must be provided.

■ getCurrentLocale returns the active locale of this implementation. A cur
rent locale must be provided.

■ setLocale set the active locale for this implementation. Support for local
other than the default locale is optional.

■ getSupportedLocalesreturns a list of supported locales of this implement
tion. At minimum it must return the default locale.

■ isLocaleSupportedreturnstrue if the specified locale is supported andfalse
if it is not.

■ getDConfigBeanVersion returns the J2EE platform version number for
which the deployment configuration beans are provided.

■ isDConfigBeanVersionSupportedreturns true if the deployment configura
tion beans support the J2EE platform version specified otherwise it retu
false.

■ setDConfigBeanVersion sets the deployment configuration beans to the
J2EE platform version specified.

4.3 Starting and Stopping Applications

The time at which an application’s running environment is initialized or sh
down is not specified. A vendor may choose to initialize an application’s runn
environment when the archive is distributed to the system or wait until the sta
action is called. The only requirement is that the application is not available t
clients until the start action is called. Similarly a vendor may choose to shut do
a running application’s environment when stop is called or wait until undeploy
called. The only requirement is that the application is made unavailable to clie
when the stop action is called.

25

the
nt

tool,

n is
4.4 Internationalization

Tool Providers and plugin providers may choose to offer internationalized
Deployment API implementations to their users. Support for locales other than
default locale is not required. A locale setting is in effect for all the Deployme
API subpackages in the provider’s implementation for the duration of a
deployment session.

4.5 Object Interaction Diagrams for
DeploymentManager

This section contains object interaction diagrams (OID) that illustrate the
interaction of the parties that participate in an application deployment. The
diagrams illustrate a hypothetical deployment session between a Deployer, a
and a J2EE product’sDeploymentManager. Where possible the corresponding
method calls and data types are used. A general description of the interactio
provided for those action that are implementation-specific.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

26
Figure 88Info.4.1 Distributing an Application

27
Figure 88Info.4.2 Starting an Application

28
Figure 88Info.4.3 Stopping an Application

29
Figure 88Info.4.4 Undeploying an Application

30

ons,

lity

2EE
 is

les
prise

ged

ay
e
t

4.6 DeploymentManager and the J2EE Management
Specification (JSR 77)

The J2EE Management Specification defines a model for platform
management. Deployment is an integral part of J2EE platform management.
Deployment depends on management functionality to start installed applicati
stop running applications, and report the status of applications. This section
describes the recommended mappings of the DeploymentManager functiona
to the management model.

4.6.1 Listing Deployed Modules

The management model provides access to all managed objects on the J
platform through the J2EE Management EJB component (MEJB). The MEJB
registered in the Java Naming and Directory Interface ™ (JNDI) service. The
DeploymentManager may use the MEJB to acquire the list of deployed modu
on the platform. See chapter 7, "J2EE Management EJB" in the Java 2 Enter
Edition Management Specification.

4.6.2 Module Start and Stop

The management model provides a facility for state management of mana
objects. This is an optional feature. The state management facility allows
applications to start and stop deployed modules. The DeploymentManager m
use this facility to start and stop modules that support state management. Se
chapter 5, "State Management" in the Java 2 Enterprise Edition Managemen
Specification.

31

tion
in

n

s:

ents
n:
nents

heets
ave
5
Deployment Configuration

Components

The deployment plan is a file or a stream that contains the deployment configura
information. The data is the J2EE product provider-specific information required
order to deploy the application to the product provider’s platform. It is
recommended that the file format be XML.

5.1 Runtime Configuration Components

The components that present to the Deployer the dynamic deployment
configuration information for a J2EE product are JavaBeans. This specificatio
requires the JavaBeans API Specification version 1.01 be followed for these
components.

The deployment configuration components are the contracts between the
J2EE Product Provider and the Tool Provider. The components are as follow

• Deployment Configuration Beans

• Deployment Descriptor Beans

5.1.1 Deployment Configuration Beans

Deployment Configuration Beans (config beans for short) are the compon
that present to the Deployer the dynamic deployment configuration informatio
the external dependencies that must be resolved. They are JavaBeans compo
that enable the deployment information to be presented as simple property s
with property editors or with custom wizards. The properties are expected to h

32

n the
tion

one

ents

 is a

e

t
ust

end
s for
default values when possible. (It is important to note that the Deployer’s
acceptance of the default values does not guarantee optimum performance o
J2EE Provider’s product.) The J2EE Product Provider provides the configura
beans for its product.

A config bean represents a logical grouping of deployment configuration
information that will be presented to the Deployer. A config bean has a one-to-
relationship to the text of an XML tag in a deployment descriptor through its
association with aDDBean. A config bean may contain other config beans and
regular JavaBeans. It provides zero or more XPaths for XML information it
requires. The topmost parent config bean is the root config bean which repres
a single deployment descriptor file; it is associated with aDDBeanRoot.

Config beans can be represented as a tree structure. The root of the tree
DConfigBeanRoot. The nodes of the tree are DConfigBean objects. A config bean
with zero XPaths or one which has no child config beans is an end node in th
tree.

An application can contain many J2EE component modules. A componen
module contains one or more deployment descriptors. A component module m
contain a deployment descriptor for its component type. This is the primary
deployment descriptor for the module. See the corresponding component
specification for details. It may contain other deployment descriptors that ext
its basic component functionality. These are secondary deployment descriptor
the module. See the Web Services 1.1 specification.

A DeploymentConfiguration object is a container for allDConfigBeanRoot
objects. They represent primary deployment descriptors. ADConfigBeanRoot

object is a container for any secondary deployment descriptors in the same
component module.

5.1.1.1 DConfigBean Methods

DConfigBean is a bean for configuring a vendor-specific deployment
descriptor or a subset of one.

• getDConfigBean returns the server-specific configuration bean for a given
sub-element of the standard deployment descriptor.

• getDDBean returns theDDBean storing the concrete deployment descriptor
fragment this DConfigBean is configuring.

33

ge

k.
• removeDConfigBean removes a child DConfigBean from this bean.

• getXpathsreturns a list of XPath strings representing the deployment de-
scriptor information that aDDBean must retrieve

• notifyDDChange indicates that theDDBean provided in the event has changed
and that this bean or its child beans need to reevaluate themselves.

• addPropertyChangeListener supports standard JavaBeans property chan
notification registration.

• removePropertyChangeListener supports standard JavaBeans property
change notification de-registration.

5.1.1.2 DConfigBeanRoot Methods

DConfigBeanRoot is a config bean associated with the root of a primary
deployment descriptor. ADConfigBeanRoot object may have childDConfigBean
objects representing secondary deployment descriptors.

• getDConfigBean returns aDConfigBean object for aDDBeanRoot of a second-
ary deployment descriptor.

5.1.1.3 DeploymentConfiguration Methods

DeploymentConfiguration is a container for all the server-specific
configuration information for a single application

• getDConfigBeanRootreturns the vendor-specificDConfigBeanRoot for a pri-
mary deployment descriptor.

• getDeployableObject returns the top-levelDeployableObject for this con-
figuration.

• removeDConfigBean removes the DConfigBeanRoot and all its children.

• restore restores a deployment configuration session that was saved to dis

• restoreDConfigBean restores the designatedDConfigBean that was saved to
disk.

• save writes a deployment configuration session to disk.

• saveDConfigBean writes the designated DConfigBean to disk.

34

that
 are
ent

DD

ore

ble

-

tion

s

d

de-
5.1.2 Deployment Descriptor Beans

Deployment Descriptor Beans (DD beans for short) are the components
present the text, based upon the XPath string, back to the config bean. They
the mechanism for reading and extracting data from the application’s deploym
descriptor files. The Tool Provider provides the DD beans for its product.

A DD bean is associated with a deployment descriptor. It can have child
beans. The topmost DD bean is the root DD bean, which represents a single
deployment descriptor file.

A deployable J2EE application can be an EAR file that contains one or m
modules or a single stand-alone module (JAR, WAR, or RAR) file. There are
separate configuration-related containers for these two categories of deploya
modules:

• TheJ2eeApplicationObject object is the container for an EAR file. It is a spe
cial type ofDeployableObject that contains aDeployableObject for each
module in the archive. It provides accessor methods to access the informa
in a singleDeployableObject or a group of them, which are provided by the
Tool Provider.

• TheDeployableObject object is the container for a single module. It maintain
references to the deployment descriptor files, theDDBeanRoot objects and all
the child DD beans for the module.

5.1.2.1 DDBean Methods

DDBean is a bean that represents a fragment of a standard deployment
descriptor.

• getChildBeanreturns a list of childDDBean objects based upon the designate
XPath.

• getRootreturns theDDBeanRoot object of this bean.

• getText returns the deployment descriptor text associated with this bean.

• getId returns a tool-specific reference for attribute ID on an element in the
ployment descriptor.

• getXpath returns the original XPath string provided by the DConfigBean.

35

.

DT-

le

d

ed

E

-

• getAttributeNames returns the list of attribute names associated with the
XML element.

• getAttributeValue returns the string value of the named attribute.

• addXpathListener supports registration of XPath listener objects.

• removeXpathListener supports de-registration of XPath listener objects.

5.1.2.2 DDBeanRoot Methods

DDBeanRoot is aDDBean that represents the root of a deployment descriptor

• getDeployableObject returns the containingDeployableObject.

• getModuleDTDVersion returns the DTD version number.

• getDDBeanRootVersion returns the version number of an XML instance
document.This method is replacing the methods DDBeanRoot.getModule
DVersion and DeployableObject.getModuleDTDVersion.

• getFilename returns the filename relative to the root of the module of the
XML instance document this DDBeanRoot represents.

• getType returns the deployment descriptor type.

5.1.2.3 DeployableObject Methods

DeployableObject is a bean that represents a J2EE module within an EAR fi
or an independently deployable module.

• getChildBean returns a list ofDDBean objects associated with the designate
XPath.

• getClassFromScope returns a class from the component module associat
with this deployment descriptor.

• getModuleDTDVersion returns the DTD version number of the module’s
component deployment descriptor file. This method is being deprecated.
With the addition of multiple deployment descritors in components for J2E
1.4 this method is being replaced byDDBeanRoot.getDDBeanRootVersion.

• getDDBeanRootreturns theDDBeanRoot object for the component’s primary
deployment descriptor.

• getDDBeanRoot returns a DDBeanRoot object for the XML instance docu
ment named in the input parameter.

36

ted

ted

le

y

files
ule

one

-

• getText returns the deployment descriptor text associated with the designa
XPath.

• entries returns an enumeration of the module’s file entries.

• getEntry returns the InputStream for the given file entry name.

• getType return the module type of thisDeployableObject.

5.1.2.4 J2eeApplicationObject Methods

J2eeApplicationObject is a bean that represents a J2EE application EAR
file. It is a special type ofDeployableObject. It has aDeployableObject for each
module in the archive.

• getChildBean returns a list ofDDBean objects based upon the designated
XPath and module type.

• getDeployableObject returns aDeployableObject based upon a URI.

• getDeployableObjectsreturns a list ofDeployableObject objects based upon
the designated module type.

• getModuleUris returns the module based upon its URI.

• getText returns the deployment descriptor text associated with the designa
XPath and module type.

• addXpathListener supports registration of XPath listener objects by modu
type.

• removeXpathListener supports de-registration of XPath listener objects b
module type.

5.2 Multiple Deployment Descriptor Files

A J2EE component module contains one or more deployment descriptor
and zero or more non-deployment descriptor XML instance documents. A mod
must contain a component specific deployment descriptor file. It may contain
or more deployment descriptor files that define extra functionality on the
component for example webservice.xml and it may contain zero or more non
deployment descriptor XML instance documents.

37

as
rty

r to
 The

f yet

t
by

tool

r
The
g to
The tool is required to present the server plugin aDDBeanRoot object for each
deployment descriptor file in the module. MethodDeploymentConfigura-

tion.getDConfigBean must be called with theDDBeanRoot object for the
component specific deployment descriptor and methodDConfiBeanRoot.getDCon-

figBean must be called with theDDBeanRoot object for the deployment descriptor
that extends the base component functionality.

The server plugin provider calls methodDeployableObject.getDDBeanRoot

for each non-deployment descriptor XML instance document it requires aDDBean-

Root object for.

5.3 UI Contract between Tool and Server Plugin

JavaBean components present the dynamic deployment configuration
information for a J2EE plugin to the deployer. The JavaBeans architecture w
chosen because of its versatility in providing both property sheets and prope
editors, as well as sophisticated customization wizards.

The JavaBean GUI mechanism, that a plugin provider implements in orde
enable their DConfigBeans to be displayed by a deploy tool is not specified.
plugin provider may choose to provide a Customizer for one DConfigBean, a
Property Editor for a complex datatype for the Property Sheet of another
DConfigBean, and to use the default Property Editors for the Property Sheet o
a third DConfigBean. See the JavaBeans API Specification version 1.01.

The manner in which a tool analyzes a DConfigBean and displays it is no
specified. It is recommended that any Customizer or Property Editor provided
the plugin vendor take precedence over similar functionality provided by the
vendor.

It is expected that a Property Editor will be provided by a plugin vendor fo
any complex datatype in a DConfigBean that is to be edited by the Deployer.
Property Editor should be implemented and made available to a tool accordin
the guidelines defined in the JavaBeans API Specification version 1.01.

38

e

D
nt
ing
 are

nd
5.4 ModuleType Enumeration Objects

The J2EE module types are provided in the class
javax.enterprise.deploy.shared.ModuleType. Its values are:

• ModuleType.EAR indicates the module is an EAR archive.

• ModuleType.EJB indicates the module is an Enterprise Java Bean archiv

• ModuleType.CAR indicates the module is an Client Application archive.

• ModuleType.RAR indicates the module is an Connector archive.

• ModuleType.WAR indicates the module is an Web Application archive.

5.5 Deployment Descriptor Document Version

All deployment descriptors must indicate the document type definition, DT
or XML Schema version being used. The version number resides in a differe
location in the DTD than in an XML Schema document. Modules packaged us
J2EE 1.3 and 1.2 tools are in DTD format. Modules packaged using 1.4 tools
in XML Schema format.

5.5.1 DTD Document

The version number of the an XML DTD based deployment descriptor
instance document is defined in the DOCTYPE statement. The DOCTYPE
statement contains the version number in the label of the statement.

The format of the DOCTYPE statement is:

<!DOCTYPE root_elementPUBLIC "-//organization//label//language" "location">

• root_element is the name of the root document in the DTD.

• organization is the name of the organization responsible for the creation a
maintenance of the DTD being referenced.

• label is a unique descriptive name for the public text being referenced.

39

cod-

D

r

es
ava

duct
me
• languageis the ISO 639 language id representing the natural language en
ing of the DTD.

• location is the URL of the DTD.

An example J2EE deployment descriptor DOCTYPE statement is:

<!DOCTYPE application-clientPUBLIC
 "-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"
 "http://java.sun.com/dtd/application-client_1_3.dtd">

In this example the label is, "DTD J2EE Application Client 1.3", and the DT
version number is 1.3. A call togetDDBeanRootVersion would return a string
containing, "1.3".

5.5.2 XML Schema Document

The version number of the an XML Schema based deployment descripto
instance document is defined in the “version” attribute on the root element.

<application xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"

version="1.4">

In this example the value of the version attribute is 1.4. A call togetDDBean-

RootVersion would return a string containing, “1.4”.

5.6 DConfigBean Version

Each version of the Java 2 Platform Enterprise Edition Specification defin
the Java Compatible™ runtime environment it requires. It is a version of the J
2 Platform, Standard Edition (J2SE). This specification requires the J2EE Pro
Provider to provide its Deployment API implementation based upon this runti
environment, and the Tool Provider to support the runtime environment. The
DConfigBean Version number is the version number of the J2EE platform for
which the APIs were built.

40

EE

ath
mar

s
 the

L

nt

ure
for

must
It is required that the same version of the Tool Provider’s APIs and the J2
Provider’s APIs interact. It is not required that differing versions of the APIs
interact.

5.6.1 DConfigBeanVersionType Enumeration Objects

The platform version number is provided in the class
javax.enterprise.deploy.shared.DConfigBeanVersionType. Its values are:

• DConfigBeanVersion.V1_3 indicates the beans were built for the J2EE 1.3
platform.

• DConfigBeanVersion.V1_3_1 indicates the beans were built for the J2EE
1.3.1 platform.This constant should never be used. Use V1_3 instead.

• DConfigBeanVersion.V1_4 indicates the beans were built for the J2EE 1.4
platform.

5.7 XPath Syntax

XML Path Language (XPath) Version 1.0 is used as the path notation for
navigating the hierarchical structure of the deployment descriptor document.
Only the AbsoluteLocationPath and RelativeLocationPath elements of the XP
standard are used by this API, and only a subset of these two elements’ gram
is used. The XPath Location Step (that is an axis specifier, a node test, and
predicates) is not used in the AbsoluteLocationPaths or RelativeLocationPath
specified by the configuration beans in this API. The path element, ‘.’ selects
context node and ‘..’ selects the parent context node. What remains are
AbsoluteLocationPaths and RelativeLocationPaths consisting of ‘.’, ‘..’, and XM
tags separated by forward slashes (/).

DTD-based and XML Schema-based deployment descriptors have differe
XPath naming requirements. This is due to the use of namespaces in XML
Schema but not in DTD-based deployment descriptors. The namespace feat
requires the addition of a namespace prefix to each XML element in the XPath
a J2EE XML Schema-based instance document. Each element in an XPath
be specifically qualified with the namespace prefix that is bound to the
namespace’s URI. The format is:

41

ted

ut a

r a

er.

this
e
ce.

o

ro
th

 fully
< prefix>:<XML tag>

Prefix is a name associated with the namespace URI. The colon (:) is a
separator between the prefix and the XML tag.

A namespace is uniquely identified using a URI. A prefix may be associa
with a namespace URI. The reserved attributexmlns is used to define a
namespace without an associated prefix; the reserved attributexmlns: is used to
defined a namespace with an associated prefix. A namespace defined witho
prefix is treated as part of the default namespace. The element in which the
default namespace is specified and all the contents within the element are
associated with the XML Schema Namespace. If there is no prefix defined fo
namespace, the <prefix>: is not used in the XPath element qualifier, only the
<XML tag> is given. Since namespaces are not supported in DTD-based
deployment descriptors, the <prefix>: is never used in XPath element qualifi

The required namespace for J2EE XML Schema-based deployment
descriptors is http://java.sun.com/xml/ns/j2ee. There is no required prefix for
namespace. The prefix can either be specified by the creator of the instanc
document or it can be left unspecified and thus part of the default namespa

To build a proper XPath string a J2EE Product Provider plugin will need t
determine the active namespaces for elements in a deployment descriptor
instance document, by analyzing the attributes on the instance document
elements.

5.7.1 AbsoluteLocationPath Syntax

An XPath whose first character is a forward slash ’/’ designates an
AbsoluteLocationPath. It starts at the root of the document.

An XPath whose first character is a forward slash ’/’ may be followed by ze
or more fully qualified element names separated by a forward slash. An XPa
consisting of a single forward slash designates the document root.

A DTD based deployment descriptor does not use namespaces, thus the
plugin provider does not need to determine the active name space and each
qualified element consists of the XML tag only. In the example below the

42

ptor

 is
sed
AbsoluteLocationPath to the two env-entry tags in the EJB deployment descri
would be:

/ejb-jar/enterprise-beans/session/env-entry

<ejb-jar>

<enterprise-beans>

<session>

<env-entry>

<env-entry-name>ejb/mail/SendMail

</env-entry-name>

<env-entry-type>java.lang.Boolean

</env-entry-type>

<env-entry-value>false</env-entry-value>

</env-entry>

<env-entry>

<env-entry-name>event/SignoutEvent

</env-entry-name>

<env-entry-type>java.lang.String

</env-entry-type>

<env-entry-value>ejb.SignoutHandler

</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

</ejb-jar>

In the example below the plugin vendor would have determined that there
one active namespace. It is defined in the root element of the XML Schema ba
instance document. The J2EE namespace prefix is defined to be ‘j’
xmlns:j="http://java.sun.com/xml/ns/j2ee". The AbsoluteLocationPath to the
two env-entry tags in the EJB deployment descriptor would be:

/j:ejb-jar/j:enterprise-beans/j:session/j:env-entry

<j:ejb-jar xmlns:j="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
version="2.1">
<j:enterprise-beans>

<j:session>

<j:env-entry>

<j:env-entry-name>ejb/mail/SendMail

43

 or

h to

 to
</j:env-entry-name>

<j:env-entry-type>java.lang.Boolean

</j:env-entry-type>

<j:env-entry-value>false</j:env-entry-value>

</j:env-entry>

<j:env-entry>

<j:env-entry-name>event/SignoutEvent

</j:env-entry-name>

<j:env-entry-type>java.lang.String

</j:env-entry-type>

<j:env-entry-value>ejb.SignoutHandler

</j:env-entry-value>

</j:env-entry>

</j:session>

</j:enterprise-beans>

</j:ejb-jar>

5.7.2 RelativeLocationPath Syntax

An XPath whose first character is not a forward slash ’/’, but that has one
more qualified elements separated by a forward slash, designates a
RelativeLocationPath. It starts from the current location in the document.

For example in a DTD based instance document the RelativeLocationPat
the twoenv-entry tags in the EJB deployment descriptor below would be the
following assuming that a previous XPath was simply "/", which is a reference
the root of the file.

ejb-jar/enterprise-beans/session/env-entry

<ejb-jar>

<enterprise-beans>

<session>

<env-entry>

<env-entry-name>ejb/mail/SendMail

</env-entry-name>

<env-entry-type>java.lang.Boolean

</env-entry-type>

<env-entry-value>false</env-entry-value>

</env-entry>

<env-entry>

44

r

<env-entry-name>event/SignoutEvent

</env-entry-name>

<env-entry-type>java.lang.String

</env-entry-type>

<env-entry-value>ejb.SignoutHandler

</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

</ejb-jar>

In a XML Schema based instance document with a defined prefix,j, the
RelativeLocationPath to the twoenv-entry tags in the EJB deployment descripto
below would be the following assuming that a previous XPath was simply "/",
which is a reference to the root of the file.

j:ejb-jar/j:enterprise-beans/j:jsession/j:env-entry

<j:ejb-jar xmlns:j="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd

version="2.1">

<j:enterprise-beans>

<j:session>

<j:env-entry>

<j:env-entry-name>ejb/mail/SendMail

</j:env-entry-name>

<j:env-entry-type>java.lang.Boolean

</j:env-entry-type>

<j:env-entry-value>false</j:env-entry-value>

</j:env-entry>

<j:env-entry>

<j:env-entry-name>event/SignoutEvent

</j:env-entry-name>

<j:env-entry-type>java.lang.String

</j:env-entry-type>

<j:env-entry-value>ejb.SignoutHandler

</j:env-entry-value>

</j:env-entry>

</j:session>

</j:enterprise-beans>

</j:ejb-jar>

45

aces.

e and

ere
 for
5.7.3 Multiple Namespaces

A J2EE XML Schema based document has one or more defined namesp
The required namespace for a J2EE deployment descriptor ishttp://

java.sun.com/xml/ns/j2ee . A server vendor may define other namespaces
which define the data in adeployment-extension tag. For exmaple the root
element of the document below defines two namespaces, the J2EE namespac
the foobar.com namespace. Thefoobar.com namespace is used for elements
contained in thedeployment-extension tag.

In creating an XPath string for the exmaple below it should be noted that th
is no prefix defined for the J2EE namespace, so only the element tag is used
the associated elements and a prefix offoobar is defined for namespace
foobar.com, xmlns:foobar="http://foobar.com", thus the
absoluteLocationPath to elementfoobar:comment would be

/web-app/deployment-extension/foobar:comment

From the element above the RelativeLocationPath tofoobar:version

would be:

foobar:product/foobar:version

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:foobar="http://foobar.com"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd http://foobar.com

http://foobar.com/foobar.xsd"

version="2.4">

<servlet>

 <servlet-name>MyInventoryServlet</servlet-name>

<servlet-class>com.acme.Inventory</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

46

wo,
</init-param>

<init-param>

<param-name>defaultCompany</param-name>

<param-value>ToysRUs</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

:

:

:

<deployment-extension namespace="http://foobar.com"

mustUnderstand="false">

<extension-element xsi:type="foobar:mytype">

<foobar:comment>This component is generated by Foobar company

</foobar:comment>

<foobar:product>Foobar Build Environment</foobar:product>

<foobar:version>100.5</foobar:version>
</foobar:product>
</extension-element>

</deployment-extension>

An alternative implementation of the example above is to define thefoobar

namespace in thedeployment-extension element. The J2EE Product Provider
plugin would have had to analyze the attributes on the root element and the
deployment-extension element in order to generate the XPath strings.

 A server plugin could get thefoobar:version data with the following
steps. One, determine the J2EE namespace prefix from the root element. T
create the AbsoluteLocationPath/web-app/deployment-extension. Three,
evaluate eachdeployment-extension element for thefoobar namespace name.
Four, determine the prefix of thefoobar namespace. Five, create
theRelativeLocationPath:

extension-element/foobar:comment/foobar:product/foobar:version

 <web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

version="2.4">

47

tion

on

ient.
<servlet>

<servlet-name>MyInventoryServlet</servlet-name>

<servlet-class>com.acme.Inventory</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>defaultCompany</param-name>

<param-value>ToysRUs</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

:

:

:

<deployment-extension namespace="http://foobar.com"

xmlns:foobar="http://foobar.com"

xsi:schemaLocation=http://foobar.com

http://foobar.com/foobar.xsd"

mustUnderstand="false">

<extension-element xsi:type="foobar:mytype">

<foobar:comment>This component is generated byFoobar company

</foobar:comment>

<foobar:product>Foobar Build Environment</foobar:product>

<foobar:version>100.5</foobar:version>

</extension-element>

</deployment-extension>

</web-app>

5.8 Client Applications

The J2EE platform specification leaves the mechanism used to install the
application client to the discretion of the J2EE Product Provider. The specifica
notes that there are a wide range of possibilities; a vendor might allow the
application client to be deployed on a J2EE server and automatically made
available to some set of clients. A vendor might require the J2EE application
bundle containing the application client to be manually deployed and installed
each client machine or they could have the deployment tool produce an
installation package that can be used by each client to install the application cl

48

 a
dle

e

he

ans
ted
vity
not
eir
It is recommended that an application client DConfigBean be provided that
supports the vendor’s application client installation mechanism. For example
J2EE product that requires the manual deployment of an application client bun
might request the Deployer to provide a disk location where the bundle will b
copied or the bean might inform the Deployer where to retrieve the bundle.

5.9 Object Interaction Diagrams for Deployment
Configuration Beans

This section contains an object interaction diagram (OID) that illustrates t
interaction of DD beans and configuration beans.

Figure 5.1 illustrates a hypothetical session for generating configuration be
for a J2EE application. The Tool is the control center. DD Beans activity is no
to the left of the Tool, and a J2EE product provider’s configuration beans acti
is to the right. Two objects, DeploymentConfiguration and DConfigBean, are
listed at the top of the diagram. They appear in the middle of the diagram. Th
activity is mapped after they are created.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

49
Figure 5.1

50
Figure 5.2 Deployment Configuration

51
5.9.1 Restore Configuration Beans

52

53

on.

in

by a

he
load
cal

ds

rsion

E

the

le.

he
load
cal
6
Packaging

A server plugin is packaged into one or more JAR files with a .jar extensi
The JAR file or files contain an implementation of thejavax.enter-

prise.deploy.spi package and utility classes. The APIs must be implemented
the vendor’s namespace.

The entry point class to the server plugin is an implementation of theDeploy-

mentFactory interface. There can be one or moreDeploymentFactory

implementation classes in the plugin. Each implementation must be identified
fully qualified class name in the JAR file’s manifest file by the attribute,J2EE-

DeploymentFactory-Implementation-Class.

The manner in which a vendor’s plugin JAR file(s) are made available to t
tool is not specified. Some J2EE Product vendors may direct the user to down
the plugin from a web site, another may require the user to copy it from their lo
server installation, and another may provide an initial JAR file whoseDeploy-

mentFactory implementation contains an automated mechanism that downloa
the JAR file(s) on a tool’s initial request for aDeploymentFactory.

The plugin should not assume that any packages other than the J2SE ve
required by the plugin’s J2EE platform or higher and thejavax.enter-

prise.deploy package will be available. The plugin should not provide the J2E
APIs in the JAR files provided to the tool. Plugins should not attempt to load
application classes in the tool. The plugin may send the application classes to
server and load them there for reflection, but the plugin should not try to use
reflection on application classes in the plugin because doing so is not portab

The manner in which a vendor’s plugin JAR file(s) are made available to t
tool is not specified. Some J2EE Product vendors may direct the user to down
the plugin from a web site, others may require the user to copy it from their lo

54

ds

th is
ar

ay
. A
r it

gin

 of
server installation, and another may provide an initial JAR file whoseDeploy-

mentFactory implementation contains an automated mechanism that downloa
the JAR file(s) on a tool’s initial request for aDeploymentFactory.

6.1 Accessing a server plugin

The manner in which a tool makes a server plugin accessible in its classpa
not specified. One tool vendor may designate a directory in which all plugin j
files are saved. It could then process all the jar files in the directory. Another m
retain a repository of plugin names and directory locations which it processes
third vendor may require the user to identify the location of the plugin wheneve
runs.

The tool vendor is required to provide the J2SE version required by the plu
or higher and thejavax.enterprise.deploy package. SeegetDConfigBeanVer-
sion in Section 4.2 for information on how to get the plugin version.

The entry point to a server plugin is the implementation of theDeployment-

Factory interface. A server vendor must provide at least one implementation
theDeploymentFactory interface. The fully qualified name of eachDeployment-

Factory implementation in a JAR file must be identified in theJ2EE-Deployment-

Factory-Implementation-Class attribute of the JAR file’s manifest file.

55

t

ver or
rly
ation
any

e

loyer

uct.

t

e

l
ing
7
Deployment Targe

A deployment target (target for short) represents an association between a ser
group of servers and a location to deposit a J2EE module that has been prope
prepared to run on the server or servers. A target can represent a specific applic
server installation on a specific host or it can represent a cluster of servers over m
hosts. The storage area may be a directory or database or some other storag
location. ATarget represents an atomic element. For example aTarget can
represent a cluster of servers as a single deployable target. The tool and Dep
need not know the server configuration that aTarget represents. It is left to the
product provider to define the type of association that is appropriate for its prod

At least oneTarget object must be defined per J2EE product. The produc
target information must be accessible to theDeploymentManager. An application
will be distributed to the target or targets specified at deployment time.

7.1 Target Methods

• getNamereturns a string containing the name of the target.

• getDescription returns a string containing descriptive information about th
target.

7.2 Target Examples

Figure 6.1 shows three hypothetical targets. The figures show the logica
relationships of the elements. They are not meant to imply a physical partition
of elements into separate machines, processes, or address spaces.

56

le
vers

 be
aired
dor’s
Example 1 illustrates a J2EE product that defines threeTarget objects. Each
target represents the association of a server with a separate directory archive
repository.

Example 2 illustrates a J2EE product that defines oneTarget object. Three
servers use the same directory for the target’s archive repository. This examp
demonstrates a target functioning as a stagging area from which multiple ser
pull applications to install and run.

Example 3 there are J2EE product vendors that define a unique server to
defined by a server paired with a database. In this example a single server is p
with two separate databases, thus there are two separate servers by this ven
definition . A unique target has been defined for each server in this example.

57
Figure 7.1 Example Targets

58
Figure 7.2 Target Examples

59

ectly
2EE
ction
get
7.3 Target and the J2EE Management Specification
(JSR 77)

There is no managed object in the management model that translates dir
to a Target object. There is a J2EEServer object. This represents a single J
server. A Target can represent a single server, but it can also represent a colle
of servers. It is left to the J2EE Product Provider to provide a translation of Tar
object to J2EEServer objects for their product. See section 3.3, "J2EEServer
extends J2EEManagedObject" in the Java 2 Enterprise Edition Management
Specification.

60

61

sts

uct.

n.

d

e

le or

ed

e

8
TargetModuleID

TheTargetModuleID object contains a target-module ID, which is a unique
identifier associated with a distributed module. The identifying information consi
of the target name on which the module is distributed and a unique identifier
assigned to the module. The module identifier must be unique within the J2EE
product. The identifier remains the same for the life of the module on the prod
The target-module ID of each deployed module must be accessible to theDeploy-

mentManager.

TheTargetModuleID also maintains a reference to its parent and its childre
If the parent reference is null, theTargetModuleID is the root of the deployed
application. ATargetModuleID for a stand-alone module will have no parent an
no children references.

TheTargetModuleID is the mechanism by which the Deployer identifies to th
J2EE product through theDeploymentManager the deployed application or
module on which to perform a deployment operation, such as starting a modu
undeploying a module.

8.1 TargetModuleID Methods

■ getModuleID returns a string containing the module name for the deploy
module.

■ getTarget returns theTarget object for the module.

■ toString returns a string containing the unique identifier, consisting of th
target name and module name, that represents the deployed module.

62

e

b

 a
t
ain
nt of

at the
. See
■ getParentTargetModuleID returns aTargetModuleID object that references
the parent of this object. Anull value means that this is the root object of th
deployed application.

■ getChildTargetModuleID returns a list of all the children of this object.

■ getWebURL returns the URL of a web module if this ID represents a we
module. Anull value means this ID does not represent a web module.

8.2 TargetModuleID and the J2EE Management
Specification (JSR 77)

In the management model the class J2EEObjectName is used to identify
managed object. It is a value object that uniquely identifies a managed objec
within a management domain. The object name consists of two parts, a dom
name and a set of key properties. The key property list enables the assignme
unique names to managed objects of a given domain. It is recommended th
moduleID be used as one of the key properties of the managed object name
section 7.3, "J2EEObjectName Class" in the Java 2 Enterprise Edition
Management Specification.

63

t

d
, and

can

for

and
ncel

f the
was

rrent
g

ect
9
ProgressObjec

A ProgressObject object tracks and reports the progress of potentially long-live
deployment operations, such as those represented by the distribute, start, stop
undeploy methods. It also provides an means to retrieve, configure and run an
application client. The ProgressObject class has been defined such that a tool
either poll it for status or provide a callback.

The J2EEE Product Provider may provide a cancel method or stop method
the running operation. These areoptionaloperations in the API. A tool can check
for support of the cancel operation by calling the isCancelSupported method,
support of the stop operation by calling isStopSupported. An unsupported ca
or stop operation must throw anUnsupportedOperationException.

A cancel request on an in-process operation stops all further processing o
operation and returns the environment to its original state before the operation
executed. An operation that has run to completion cannot be cancelled.

A stop request on an in-process operation allows the operation on the cu
TargetModuleID to run to completion but does not process any of the remainin
unprocessedTargetModuleID objects. The processedTargetModuleID objects
must be returned by the methodgetResultTargetModuleIDs.

A ClientConfiguration object is returned by the ProgressObject for each
application client distributed to the J2EE product. The ClientConfiguration obj
is a JavaBean that installs, configures and executes an application client. A
ClientExecuteException is thrown if the configuration is incomplete.

64

d

n-

 a

on
 ob-

s

in-

-

9.1 ProgressObject Methods

• getDeploymentStatus returns theDeploymentStatus object that contains the
current status details.

• getResultTargetModuleIDsreturns a list ofTargetModuleIDs that completed
the associatedDeploymentManager operation successfully.

• getClientConfiguration returns a ClientConfiguration object that installs,
configures, and executes an application client.

• isCancelSupportedindicates whether this product provider has implemente
a cancel operation for the associatedDeploymentManager operation.

• cancelstops all further processing of the operation and returns the enviro
ment to its original state before the operation was executed. This is anoption-
al method for vendor implementation.

• isStopSupported indicates whether this product provider has implemented
stop operation for the associatedDeploymentManager operation.

• stopallows the operation on the current TargetModuleID to run to completi
but does not process any of the remaining unprocessed TargetModuleID
jects. This is anoptionalmethod for vendor implementation.

9.2 DeploymentStatus Interface

TheDeploymentStatus object contains information about the progress statu
of deployment actions.

9.2.1 Deployment Command Enumeration Objects

• CommandType.DISTRIBUTE indicates that the object represents status
formation for a distribute command.

• CommandType.START indicates that the object represents status informa
tion for a start command.

65

on

-

-

m-

on

e

-

ed
• CommandType.STOPindicates that the object represents status informati
for a stop command.

• CommandType.UNDEPLOY indicates that the object represents status in
formation for an undeploy command.

• CommandType.REDEPLOY indicates that the object represents status in
formation for a redeploy operation.

9.2.2 Deployment Status Enumeration Objects

• StateType.COMPLETED indicates that the deployment operation has co
pleted normally.

• StateType.FAILED indicates the deployment operation has failed.

• StateType.RUNNING indicates that the deployment operation is running
normally.

• StateType.RELEASED indicates that theDeploymentManager started run-
ning in adisconnected mode while this ProgressObject was still active.

9.2.3 Progress Action Enumeration Objects

• ActionType.CANCEL indicates that a cancel operation is being performed
the original deployment operation.

• ActionType.STOP indicates that a stop operation is being performed on th
original deployment operation.

• ActionType.EXECUTE indicates that the initial deployment operation is be
ing performed.

9.2.4 Deployment Status Message

Additional information about the object’s deployment status can be provid
in a text string.

66

d

e of
9.2.5 DeploymentStatus Methods

• getState returns the current status value.

• getCommandreturns the DeploymentManager’s command value.

• getAction returns the current action value.

• getMessage returns information text provided about the status.

• isCompletedreturnstrue if the command has completed successfully.

• isFailed returnstrue if the command has failed.

• isRunning returnstrue if the command is currently running.

9.3 ClientConfiguration Methods

• execute installs, configures and executes the application client .

Note that the Serializable nature of the ClientConfiguration object is limite
across VM activations of the application client container.

9.4 Object Interaction Diagrams for a ProgressObject

This section contains object interaction diagrams (OID) that illustrate the
interaction of aProgressObject with the tool andDeploymentManager.

The diagrams illustrate two hypothetical sessions. Figure 8.1 shows the us
polling to get operation status. Figure 8.2 shows the use of a callback to get
operation status.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

67
Figure 9.1 ProgressObject Events by Polling

68
Figure 9.2 ProgressObject Events by Callback

69

ged
tion

nt
. See
ble"
9.5 ProgressObject and the J2EE Management
Specification (JSR 77)

The management model provides a facility for event notification by mana
objects. This is an optional feature. If a managed object supports event notifica
and the ProgressObject wishes to receive the events, it must register an eve
listener object that implements the J2EEManagementEventListener interface
section 7.7.3, "Event Listener Requirements", and section 5.1, "StateManagea
in the Java 2 Enterprise Edition Management Specification.

70

71

r

y

 this

ces of

I)

c-
10
DeploymentManage

Discovery

TheDeploymentManager is a service that helps the Deployer configure and deplo
an application to a J2EE product. Every J2EE product provides aDeploymentMan-

ager. A deployment tool must acquire a reference to the J2EE product’sDeploy-

mentManager through aDeploymentFactory object.

10.1 DeploymentFactory

A DeploymentFactory object is a deployment driver for a J2EE product. It
returns aDeploymentManager object.

Each J2EE product provider must provide at least one implementation of
class with its product. The class implementing this interface must have a
constructor that takes no arguments, and must be stateless (that is two instan
the class must always behave the same). It must be able to return aconnectedor
disconnectedDeploymentManager object.

10.1.1 DeploymentFactory Methods

• handlesURI is the method that inspects the Uniform Resource Indicator (UR
provided and returnstrue if it can provide a deployment factory for the URI,
andfalseif it can not.

• getDeploymentManagerreturns aconnectedDeploymentManager object. A
DeploymentManager that runs connected to the J2EE product can provide a
cess to J2EE resources.

72

ion
• getDisconnectedDeploymentManager returns adisconnectedDeployment-
Manager object. ADeploymentManager that runs disconnected only provides
module deployment configuration support.

10.1.2 DeploymentFactory Discovery

The fully qualified class name of everyDeploymentFactory implementation
provided in a plugin by the J2EE product provider must be listed in theJ2EE-

DeploymentFactory-Implementation-Class attribute of the containing JAR’s
manifest file.

A tool vendor must introspect each JAR manifest file extract this informat
in order to a create instance of each implementation class.

An example manifest file identifying twoDeploymentFactory implementation
classes:

Manifest-Version: 1.0

Specification-Title: J2EE Specification

Specification-Vendor: Sun Microsystems, Inc.

Created-By: 1.3.0 (Sun Microsystems Inc.)

Implementation-Vendor: Sun Microsystems, Inc.

Specification-Version: 1.3

Implementation-Version: 1.3beta

J2EE-DeploymentFactory-Implementation-Class:
com.sun.enterprise.deployapi.spi.RIDeploymentFactoryAlpha

com.sun.enterprise.deployapi.spi.RIDeploymentFactoryBeta

10.2 DeploymentFactoryManager

TheDeploymentFactoryManager represents a central registry ofDeployment-

Factory connections. The deployment API provides an implementation of the
DeploymentFactoryManager. A tool creates an instance of theDeploymentFactory
Manager. The tool creates an instance of aDeploymentFactory object and registers
it with theDeploymentFactoryManager.

73

it
When a tool requests aDeploymentManager and provides a URI, theDeploy-
mentFactoryManager is responsible for finding aDeploymentFactory that
recognizes the URI and for using it to return the correspondingDeploymentMan-

ager. If theDeploymentFactory understands the URI, it will return aDeployment-
Manager object; otherwise it returns null.

TheDeploymentFactory class provides a method,handlesURI, which the
DeploymentFactoryManager can use to determine which of its registered drivers
should use for a given URI.

10.2.1 DeploymentFactoryManager Methods

• registerDeploymentFactory adds aDeploymentFactory object to the set of
available factories.

• getDeploymentManager acquires aconnectedDeploymentManager instance.

• getDisconnectedDeploymentManageracquires adisconnectedDeployment-
Manager instance.

• getDeploymentFactories returns a list of currently registered deployment
factories.

10.2.2 URI

A Uniform Resource Identifier (URI) can be used to identify a
DeploymentManager.

A URL could be used as in the following example to identify a connected
DeploymentManager.

For example, if the Acme company provided a server product named
AcmeServerPlus, its URL could be:

example: deployer:AcmeServerPlus:myserver:9999

The following code example shows how a tool obtains a connectedDeploy-

mentManager object.

74

 a

f the
DeploymentManager manager;

String url = "deployer:AcmeServerPlus:myserver:9999";

String user = "admin";

String password = "pw";

manager = DeploymentFactoryManager.getDeploymentManager(url, user, password);

if(manager != null) {

 ... // Deploy an application

}

10.3 Object Interaction Diagrams for
DeploymentManager Discovery

This section contains object interaction diagrams (OID) that illustrate how
DeploymentManager can be retrieved.

The diagrams shows two methods of acquiring aDeploymentManager object.
Figure 9.1 shows acquiring a disconnectedDeploymentManager and figure 9.2
shows acquiring a connectedDeploymentManager. Where possible the
corresponding method calls and data types are used. A general description o
interaction is provided for those actions that are implementation-specific.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

75
Figure 10.1 Acquiring a Disconnected DeploymentManager

76
Figure 10.2 Acquiring a Connected DeploymentManager

77

78

79

t

d

d

11
Exceptions

This chapter describes the exceptions used in the Deployment API.

11.1 jaxax.enterprise.deploy.spi.exceptions package

• BeanNotFoundExceptionis thrown when the bean is not a child of the paren
bean .

• DeploymentManagerCreationException is thrown when theDeployment-
Factory is unable to create aDeploymentManager object.

• DConfigBeanVersionUnsupportedExceptionis thrown when the DDBeans
for a particular J2EE platform verions can not be provided by the tool.

• InvalidModuleException is thrown when an invalid module type is detecte
by theDeploymentManager.

• TargetException is thrown when an invalidTarget object is detected by the
DeploymentManager.

• java.lang.UnsupportedOperationExceptionis thrown when an unsupported
operation is called.

• ConfigurationException is thrown when aConfigBean cannot be created.

• ClientExecuteException is thrown when the application client run environ-
ment could not be setup properly.

• java.lang.IllegalStateException is thrown when a method has been invoke
at an illegal or inappropriate time.

80

e

11.2 javax.enterprise.deploy.model.exceptions package

• DDBeanCreateException is thrown when a DDBeanRoot object can not b
created for a specified XML instance document.

81

me>
A
Appendix

A.1 DConfigBean Design Scenarios

This section shows several ways of designing a deployment configuration
bean.

This example shows three ways aDConfigBean could be designed to extract
theres-ref-name data from the deployment descriptor fragment . Note these
examples assume that an XML parser call retrieves the Xpath data from the
deployment descriptor file.

<ejb-jar>

 <display-name>Ejb1</display-name>

 <enterprise-beans>

 <session>

 <display-name>com_sun_cts_harness_vehicle_ejb_EJBVehicle</display-na

 <ejb-name>com_sun_cts_harness_vehicle_ejb_EJBVehicle</ejb-name>

 <resource-ref>

 <res-ref-name>eis/whitebox-tx</res-ref-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>eis/whitebox-notx</res-ref-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>eis/whitebox-xa</res-ref-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>eis/whitebox-tx-param</res-ref-name>

 </resource-ref>

 <resource-ref>

82

e

 <res-ref-name>eis/whitebox-notx-param</res-ref-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>eis/whitebox-xa-param</res-ref-name>

 </resource-ref>

 </session>

 </enterprise-beans>

</ejb-jar>

A.1.1 Scenario one

In the first scenario, aDConfigBean returns a childDConfigBean for eachres-
ref-name element provided by the tool.

Session_DConfigBean, the config bean for a deployment descriptorsession

definition, is implemented by the J2EE Product Provider.

1. Session_DConfigBean requests the tool to return all of theres-ref-name data
by providing the relative Xpath, "resource-ref/res-ref-name".

2. The tool calls the XML parser to retrieve the XML elements and creates a
DDBean for each XML element that is returned.

3. EachDDBean is passed to theSession_DConfigBean.

4. TheSession_DConfigBean returns a correspondingResRefName_DConfigBean
to the tool.

5. TheResRefName_DConfigBean returns a null Xpath, because it does not hav
any child data to be collected.

/* Code provided by the J2EE Product Provider */

public Class Session_DConfigBean implementsDConfigBean {

 public String [] getXpaths() {

 String [] str = {"resource-ref/res-ref-name"};

 return str;

 }

 public DConfigBean getDConfigBean(DDBean bean) {

 return new ResRefName_DConfigBean(bean);

 }

83
}

public Class ResRefName_DConfigBean implements DConfigBean {

 public String [] getXpaths() {

 return null;

 }

}

/* Code provided by the Tool Provider */

public class Tool {

 DConfigBean parentCfgBean; // a Session_DConfigBean

 DConfigBean childCfgBean; // a ResRefName_DConfigBean

 :
 :
 :
 // parentCfgBean was passed to the tool earlier

:

 String [] xpaths = parentCfgBean.getXpaths();

 for (int i = 0; i < xpaths.length; i++) {

 /* Have the XML parser return the matching Xpath objects */

 NodeList nList = XpathAPI.selectNodeList(xmlDoc, xpaths[i]);

 /* Get a new child config bean for each DDBean presented */

 for (int j = 0; j < nList.getLength(); j++) {

 bean = new DDBean(nList[j]);

 DConfigBean childCfgBean =

 parentCfgBean.getDConfigBean(bean);

 }

 }

}

A.1.2 Scenario two

In the second scenario, theDConfigBean builds a internal table ofres-ref-
name data that will be used to display to the user. No childDConfigBeans are
returned.

84

he
TheSession_DConfigBean in this example returns a null value for method
getXpaths, therefore methodgetChildBean will never be called by the tool.

1. Session_DConfigBean retrieves the data it requires by calling itsDDBean ob-
ject’sgetChildBean method and passing the Xpath to it.

2. TheDDBean returns all the matching Xpath elements found. With this data, t
DConfigBean can build its table.

/* Code provided by the J2EE Product Provider */

public Class Session_DConfigBean implements DConfigBean {

 DDBean ddbean;

 DDBean [] childList;

 public Session_DConfigBean(DDBean bean) {

 ddbean = bean;

 childList = ddbean.getChildBean("resource-ref/res-ref-name");

 }

 public String [] getXpaths() {

 return null;

 }

 /** code to create the table **/

 :
 :
}

/* Code provided by the J2EE Product Provider */

public Class Simple_DDBean implements DDBean {

 public DDBean [] getChildBean(String xpath) {

 /* Have the XML parser return the matching Xpath objects */

 NodeList nList = XpathAPI.selectNodeList(xmlDoc, xpath);

 /* Create a new DDBean for each returned XML element */

 int cnt = nList.getLength();

 DDBean [] childList = new DDBean[cnt];

85
 for (int i = 0; i < cnt; i++)

 childList[i] = new DDBean(nList[i]);

 return childList;

 }

}

A.1.3 Scenario Three

In the third scenario, theDConfigBean builds a internal table ofres-ref-name
data as in the second scenario, but instead of retrieving a list ofDDBeans, it
retrieves the XML data as a list of strings.

In this example theSession_DConfigBean object’s correspondingDDBean
getXpath method, rather than thegetChildBean method, is called.

/* Code provided by the J2EE Product Provider */

public Class Session_DConfigBean {

 DDBean ddbean;

 String [] childStrList;

 public Session_DConfigBean(DDBean bean) {

 ddbean = bean;

 childStrList = ddbean.getText("resource-ref/res-ref-name");

 }

 public String [] getXpaths() {

 return null;

 }

 /** code to create the table **/

 :
 :
}

/* Code provided by the J2EE Product Provider */

public Class Simple_DDBean {

 public String [] getText(String xpath)

86

EE

.

.0

fault

tor
 {

 /* Have the XML parser return the matching Xpath objects */

 NodeList nList = XpathAPI.selectNodeList(xmlDoc, xpath);

 /* Get the text from the parser node */

 int cnt = nList.getLength();

 String [] childList = new String[cnt];

 for (int i = 0; i < cnt; i++)

 childList[i] = getTextFromNode(nList[i]);

 return childList;

 }

 private String getTextFromNode(Node node) {

 /* extract the string data from the node */

 }

}

A.2 EJB Container-managed Persistence

The J2EE platform requires support of the set of DTDs for the current J2
version and for previous J2EE versions. This means that container-managed
persistence, CMP 1.1 and CMP 2.0 as defined in the Enterprise JavaBeans ™
(EJB) Specification 1.1 and 2.0, must be supported. This example uses the
deployment descriptor version number provided by theDeployableObject and an
XPath query to demonstrate one possible way to determine the CMP version

 The EJB Specification 2.0 requires backward compatibility for EJB 1.1
entity beans with container-managed persistence. The EJB 2.0 deployment
descriptor DTD provides a new element,cmp-version, to identify which CMP
version to use. This element does not exist in the EJB 1.1 DTD. In an EJB 2
component, if the elementcmp-version is provided in the deployment descriptor
file, its value, 1.x or 2.x, identifies the CMP version to be used. If nocmp-version

element is used in the EJB 2.0 component deployment descriptor file, the de
version, 2.x is used.

In this example the classEntity_DConfigBean provides support for collecting
the runtime configuration information for a EJB entity bean. The class construc

87

1.1
determines the version of the EJB DTD by callinggetModuleDTDVersion on the
DeployableObject of theDDbean. The constructor assumes the DTD and CMP
version will be the same and sets thecmpVer accordingly. The constructor sets the
list of xpaths based upon the version number for efficiency.

This example could have used the same xpath list for both version 2.0 and
but since the EJB 1.1 has no such DTD element,DDbean would never be returned.
Since an EJB 1.1 DTD never provides acmp-version tag method,getDConfig-
Bean does not need to check the value ofdtdVer. It only needs to set the value of
thecmp-version presented.

public class Entity_DConfigBean implements DConfigBean {

 String xpathList [];

 DDBean ddbean;

 String dtdVer;

 String cmpVer;

 /**

 * Constructor

 */

 public Entity_DConfigBean (DDBean bean) {

 ddbean = bean;

 /* Get the bean’s DeployableObject and its DTD version number.*/

 DeployableObject dObj = ddbean.getRoot().getDeployableObject()

 dtdVer = dObj.getModuleDTDVersion();

 /* Set the xpath list for this entity bean */

 if (dtdVer.startsWith("1")) {
cmpVer = “1.x”;
xpathList = {"cmp-field"};

 }

 else {
cmpVer = “2.x”;

xpathList = {"cmp-version", "cmp-field"};
 }

 }

 /**

 * Process XML data provided by the DDBean

88
 */

 public DConfigBean getDConfigBean(DDBean bean) {

 DConfigBean cBean = null;

 String tmpStr = bean.getXpath();

 if (tmpStr.equals("cmp-version")) {

 /* get the version value */

 cmpVer = bean.getText();

 /* ... do other processing */

 :
 :
 :

	J2EE™ Deployment API
	1.1 Overview
	1.2 Scope
	1.2.1 Relationship to the J2EE Management Specification (JSR- 77)
	1.2.2 Replacing a J2EE Application

	1.3 Organization
	1.4 Object Interaction Diagram Notation
	1.5 Acknowledgments

	Roles
	2.1 J2EE Product Provider
	2.2 Tool Provider
	2.3 Deployer

	Interface Overview
	3.1 Tool Provider Interfaces
	3.1.1 javax.enterprise.deploy.model.exceptions package

	3.2 Tool Provider Classes
	3.3 Tool Provider Interfaces Diagrams
	3.4 J2EE Product Provider Interfaces
	3.4.1 javax.enterprise.deploy.spi.factories package
	3.4.2 javax.enterprise.deploy.spi.status package
	3.4.3 javax.enterprise.deploy.spi.exceptions package

	3.5 J2EE Product Provider Interfaces Diagram
	3.6 Shared Classes
	3.6.1 javax.enterprise.deploy.shared package
	3.6.2 javax.enterprise.deploy.shared.factories package

	3.7 Environment Requirements
	3.7.1 Tool’s Security Permission Set

	DeploymentManager
	4.1 DeploymentManager Requirements
	4.2 DeploymentManager Methods
	4.3 Starting and Stopping Applications
	4.4 Internationalization
	4.5 Object Interaction Diagrams for DeploymentManager
	4.6 DeploymentManager and the J2EE Management Specification (JSR 77)
	4.6.1 Listing Deployed Modules
	4.6.2 Module Start and Stop

	Deployment Configuration Components
	5.1 Runtime Configuration Components
	5.1.1 Deployment Configuration Beans
	5.1.2 Deployment Descriptor Beans

	5.2 Multiple Deployment Descriptor Files
	5.3 UI Contract between Tool and Server Plugin
	5.4 ModuleType Enumeration Objects
	5.5 Deployment Descriptor Document Version
	5.5.1 DTD Document
	5.5.2 XML Schema Document

	5.6 DConfigBean Version
	5.6.1 DConfigBeanVersionType Enumeration Objects

	5.7 XPath Syntax
	5.7.1 AbsoluteLocationPath Syntax
	5.7.2 RelativeLocationPath Syntax
	5.7.3 Multiple Namespaces

	5.8 Client Applications
	5.9 Object Interaction Diagrams for Deployment Configuration Beans
	5.9.1 Restore Configuration Beans

	Packaging
	6.1 Accessing a server plugin

	Deployment Target
	7.1 Target Methods
	7.2 Target Examples
	7.3 Target and the J2EE Management Specification (JSR 77)

	TargetModuleID
	8.1 TargetModuleID Methods
	8.2 TargetModuleID and the J2EE Management Specification (JSR 77)

	ProgressObject
	9.1 ProgressObject Methods
	9.2 DeploymentStatus Interface
	9.2.1 Deployment Command Enumeration Objects
	9.2.2 Deployment Status Enumeration Objects
	9.2.3 Progress Action Enumeration Objects
	9.2.4 Deployment Status Message
	9.2.5 DeploymentStatus Methods

	9.3 ClientConfiguration Methods
	9.4 Object Interaction Diagrams for a ProgressObject
	9.5 ProgressObject and the J2EE Management Specification (JSR 77)

	DeploymentManager Discovery
	10.1 DeploymentFactory
	10.1.1 DeploymentFactory Methods
	10.1.2 DeploymentFactory Discovery

	10.2 DeploymentFactoryManager
	10.2.1 DeploymentFactoryManager Methods
	10.2.2 URI

	10.3 Object Interaction Diagrams for DeploymentManager Discovery

	Exceptions
	11.1 jaxax.enterprise.deploy.spi.exceptions package
	11.2 javax.enterprise.deploy.model.exceptions package

	Appendix
	A.1 DConfigBean Design Scenarios
	A.2 EJB Container-managed Persistence

