Javar 2 Enterprise Edition
Deployment AP
Specification, Version 1.1

Rebecca Searls

Final Release

Java™ 2 Platform, Enterprise Edition Deployment API Specification ("Specification")
Version: 1.1

Status: FCS

Release: November, 24, 2003

Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under the Sun’s applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal evaluation, which shall be
understood to include developing applications intended to run on an implementation of the Specification
provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or patent rights it may have in the
Specification to create and/or distribute an Independent Implementation of the Specification that: (i) fully
implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset,
superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes,
Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (iii) passes the TCK (including satisfying the
requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through"
requirements in any license You grant concerning the use of your Independent Implementation or products
derived from it. However, except with respect to implementations of the Specification (and products derived
from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or
otherwise pass through to your licensees any licenses under Sun’s applicable intellectual property rights; nor
(b) authorize your licensees to make any claims concerning their implementation’s compliance with the Spec
in question.

For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of the

Specification that neither derives from any of Sun’s source code or binary code materials nor, except with an
appropriate and separate license from Sun, includes any of Sun’s source code or binary code materials; and
"Licensor Name Space" shall mean the public class or interface declarations whose names begin with “java",
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java
Community Process, or any recognized successors or replacements thereof. This Agreement will terminate
immediately without notice from Sun if you fail to comply with any material provision of or act outside the

scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2EE, J2SE, JavaBeans, Java Naming and
Directory Interface, Enterprise JavaBeans, Java Compatible and the Java Coffee Cup Logo are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS 1S". SUN MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment
to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE
INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE
FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR
FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/
OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from:
(i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean room
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to you are
incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Specification
and accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R.
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your
use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i)
agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a
perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through
multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and test suites thereof.

(LFI#136265/Form 1D#011801)

J2EE™ Deployment API. 1..

1.1 OVEIVIEW.o 1
1.2 SO0, o it e e 2
1.2.1 Relationship to the J2EE Management Specification

(SR-T7). o 2
1.2.2 Replacing a J2EE Application. 3
1.3 Organization e 3
14 Object Interaction Diagram Notation. 4
1.5 Acknowledgments 4
RoOles 7....
2.1 J2EE Product Provider 7
2.2 Tool Provider e 8
2.3 Deployer. 8
Interface OVerview. 9..
3.1 Tool Provider Interfaces. i 9
3.1.1 javax.enterprise.deploy.model.exceptions package. . ..9
3.2 Tool Provider Classes. 10
3.3 Tool Provider Interfaces Diagrams. 10
34 J2EE Product Provider Interfaces. 14
3.4.1 javax.enterprise.deploy.spi.factories package. 15
3.4.2 javax.enterprise.deploy.spi.status package 15
3.4.3 javax.enterprise.deploy.spi.exceptions package 15
3.5 J2EE Product Provider Interfaces Diagram 16
3.6 SharedClasses 19
3.6.1 javax.enterprise.deploy.shared package 19
3.6.2 javax.enterprise.deploy.shared.factories package19
3.7 Environment Requirements 20
3.7.1 Tool's Security Permission Set 20
DeploymentManager., 21
4.1 DeploymentManager Requirements. 21
4.2 DeploymentManager Methods 22
4.3 Starting and Stopping Applications 24
4.4 Internationalization. 25
4.5 Object Interaction Diagrams for DeploymentManager 25
4.6 DeploymentManager and the J2EE Management Specification
(ISR 77) o 30

4.6.1 Listing Deployed Modules 30

Vi

5

4.6.2 Module Startand Stop. 30
Deployment Configuration Components. 31
51 Runtime Configuration Components 31
5.1.1 Deployment Configuration Beans. 31
5.1.2 Deployment Descriptor Beans. 34
5.2 Multiple Deployment Descriptor Files. 36
5.3 Ul Contract between Tool and Server Plugin. 37
54 ModuleType Enumeration Objects. 38
5.5 Deployment Descriptor Document Version. 38
551 DTD Document. 38
5.5.2 XML Schema Document. 39
5.6 DConfigBean Version, 39
5.6.1 DConfigBeanVersionType Enumeration Objects. . . . 40
5.7 XPath Syntax i 40
5.7.1 AbsoluteLocationPath Syntax. 41
5.7.2 RelativeLocationPath Syntax 43
5.7.3 Multiple Namespaces 45
5.8 Client Applications. e e 47
5.9 Object Interaction Diagrams for Deployment Configuration
Beans 48
5.9.1 Restore ConfigurationBeans. 51
Packaging...............o 53..
6.1 Accessingaserverplugin., 54
Deployment Target., 85.
7.1 TargetMethods. 55
7.2 Target Examples. e 55
7.3 Target and the J2EE Management Specification (JSR 77) .. .59
TargetModulelD. 61 .
8.1 TargetModulelID Methods 61
8.2 TargetModulelD and the J2EE Management Specification (JSR
74) T 62
ProgressObject. 63. .
9.1 ProgressObject Methods. 64
9.2 DeploymentStatus Interface 64
9.2.1 Deployment Command Enumeration Objects. 64
9.2.2 Deployment Status Enumeration Objects 65

9.2.3 Progress Action Enumeration Objects 65

10

11

Vi

9.24 Deployment Status Message 65
9.25 DeploymentStatus Methods. 66
9.3 ClientConfiguration Methods. 66
9.4 Object Interaction Diagrams for a ProgressObject. 66
9.5 ProgressObject and the J2EE Management Specification (JSR
T) e e 69
DeploymentManager Discovery. 71
10.1 DeploymentFactory i 71
10.1.1 DeploymentFactory Methods 71
10.1.2 DeploymentFactory Discovery 72
10.2 DeploymentFactoryManager 72
10.2.1 DeploymentFactoryManager Methods 73
10.2.2 URI . 73
10.3 Object Interaction Diagrams for DeploymentManager Discovery
74
Exceptions. 79..
11.1 jaxax.enterprise.deploy.spi.exceptions package. 79

11.2 javax.enterprise.deploy.model.exceptions package 80

viii

CHAPTERl

J2EE™ Deployment API

This is the specification of the Java ™2 Enterprise Edition Deployment API. The
Deployment architecture defines the contracts that enable tools from multiple
providers to configure and deploy applications on any J2EE platform product. The
contracts define a uniform model between tools and J2EE platform products for|
application deployment configuration and deployment. The Deployment
architecture makes it easier to deploy applications: Deployers do not have to learn
all the features of many different J2EE deployment tools in order to deploy an
application on many different J2EE platform products.

1.1 Overview

The Deployment architecture defines implementation requirements for both
tools and J2EE platform products. The primary responsibilities of a tool are
» To access the J2EE application archive.
» To display for editing the deployment configuration information retrieved
from the J2EE platform product.

The J2EE platform product’s primary responsibilities are to

» Generate the product-specific deployment configuration information.

» To deploy the application.

The Deployment architecture uses the JavaBeans™ architecture for the
components that present the dynamic deployment configuration information
required by a provider's J2EE platform product. The JavaBeans architecture was

chosen because of its versatility in providing both simple and complex
components, as well as its platform neutrality. Beans enable the development of
simple property sheets and editors, as well as sophisticated customization wizards
for guiding the Deployer through the application deployment configuration steps.

1.2 Scope

The API in this specification describes

« A minimum set of facilities, called a plugin, that all J2EE Platform Product |
Providers must provide to Deployment Tool Providers so that portable J2EE
applications can be deployed to the Product Provider’s platform

» A minimum set of facilities that all Tool Providers must provide in order to in-
teract with the Product Provider’s plugin. |

This API describes two of the three deployment processes descrilblee in (
J2EE platform specificatigninstallation and configuration. The third process,
execution, is left to the Platform Product Provider.

We expect that J2EE product providers will extend these base facilities in
their own deployment tools, thus allowing competition with other products on
various quality of service aspects. Platform Product Providers may choose to
make their extensions available to other tool providers or not.

1.2.1 Relationship to the J2EE Management Specification (JSR-
77)

Deployment is an integral part of platform management. It depends on
management functionality to start deployed applications, stop deployed
applications, report the status of applications, and the like. We determined,
however, that J2EE platform deployment and management should be addressed in
separate JSRs, because of the ways in which these two topics need to be
addressed. J2EE platform management needs to be defined as a metadata model
and not as an API in order to best address the issues of interoperability with
different management systems and protocols. Deployment, on the other hand is
best addressed as an API. It is expected that the Platform Product Provider will
integrate the Deployment API with its management model implementation. This

specification describes its interactions with the J2EE Platform Management
Model.

1.2.2 Replacing a J2EE Application

We recognize that over time applications evolve and need updates of various
types. The J2EE specification does not currently address this issue, nor does it
prohibit the Platform Product Providers from doing so.

We believe that this API provides a sufficient infrastructure to enable Platform
Product Providers to continue providing application update solutions that are
appropriate for their implementations. In addition this specification defines a very
basic type of application redeployment. A redeploy method is provided. Itis an
optional feature for the Platform Product Provider to implement.

1.3 Organization

* Chapter 2, “Roles”, describes the responsibilities of the various implementors
of this specification.

» Chapter 3, “Interface Overview”, provides a short description of each inter-
face in the API.

» Chapter 4, "DeploymentManager", discusses the functions and responsibili-
ties of the deployment manager.

* Chapter 5, "Deployment Configuration Components”, describes the mecha-
nisms for creating and collecting the deployment configuration information.

« Chapter 6, "Deployment Target", describes an object used to represent a serv-
er.

» Chapter 7, "DeploymentTargetID", describes a structure used to identify de-
ployed applications.

» Chapter 8, "ProgressObiject”, describes the object used to monitor and report
the status of a deployment action.

» Chapter 9, "DeploymentManager Discovery", describes the discovery mecha-
nism for acquiring a platform provider's DeploymentManager.

« Chapter 10, “Exceptions”, describes the exception types of the Deployment

API.

1.4 Object Interaction Diagram Notation

Several object interaction diagrams (OID) are presented in this document. The
diagrams contain a mix of API class names and method signatures, with general
descriptive information about the interactions. The descriptive information
identifies vendor-specific facilities that are needed to support the deployment
activities, and additional actions that need to occur in relation to the diagram but
whose details are outside the scope of the drawing.

The notation used in the diagrams is as follows:

 Plain font text is used for class names and method signatures.

« ltalic font text is used to denote roles such as Deployer, Tool, J2EE Platform
Product and to note vendor specific facilities and describe general actions.

» A plain text word in a box represents a class.

1.5 Acknowledgments

This specification was developed under the Java Community Process 2.0 as
JSR-88. It includes contributions from many partner companies, as well as groups
at Sun. We would like to thank the members of the JSR-88 Expert Group in
particular for their contributions:

- Skylight Systems - Aaron Mulder

- WebGain - Mark Romano and Omar Tazi
- Forte - George Finklang

- Oracle - Gerald Ingalls

- SilverStream - Helen Herold

- Sybase - David Brandow

- BEA- Mark Spotswood and Reto Kramer and Vadim Draluk

- iPlanet - Byron Nevins and Darpan Dinker
- IBM - Michael Fraenkel and Leigh Williamson
- Verge Technologies Group Inc - Jason Westra

- IONA - David Hayes

2

Roles

This chapter describes the roles and responsibilities specific to the deployment
architecture.

2.1 J2EE Product Provider

The J2EE Product Provider is the implementor and supplier of a J2EE
compliant product. A J2EE Product Provider is typically an operating system
vendor, database system vendor, application server vendor, or web server vendor.

The J2EE Product Provider is responsible for providing an implementation of
the interfaces defined in tHavax.enterprise.deploy.spi packag . A vendor’s
implementation of this package will be referred to as the plugin or server plugih.

The product must be able to communicate with any third-party deployment
tool that adheres to this specification.

The Product Provider is responsible for implementing

« A deployment manager.
» Deployment factories, for accessing their product’s deployment manager.

» The deployment configuration components for their product.

2.2 Tool Provider

The Tool Provider is the implementor and supplier of software tools that can
be used in the development and packaging of application components, and the
deployment, management, or monitoring of applications. A Tool Provider is
typically a J2EE Product Provider that provides tools for its product, an Integrated
Development Environment (IDE) Provider, or a specialty tool provider.

The Tool Provider is responsible for providing an implementation of the
interfaces defined in thiavax.enterprise.deploy.model package. In addition,
the tool must provide a means to discover and interact with a designated J2EE
product’s deployment manager and to display the configuration beans provided by
it.

2.3 Deployer

The Deployer is responsible for configuring and deploying J2EE modules on
a specific J2EE product. Deployment is typically a three-stage process:

1. Configuration: The Deployer follows the assembly instructions provided by
the Application Assembler and resolves any external dependencies declared
by the Application Component Provider.

2. Distribution: The application archive and the deployment configuration infor-
mation are installed on the servers via the Deployment API.

3. Start execution: The Deployer requests the server to start the application run-
ning.

3

Interface Overview

The Deployment API consists of eight packages. Two are implemented by the Tpol
Provider. Four are implemented by the J2EE Product Provider. Two are provided by
this API.

This section provides a quick overview of the interfaces. More detail is
provided in the following chapters and in the accompanying API documentation.

3.1 Tool Provider Interfaces

The interfaces for the Tool Provider are in the packggex.enter-
prise.deploy.model.

» DeployableObijectrepresents a J2EE deployable module, an EAR, JAR,
WAR, or RAR archive.

» J2eeApplicationObjectrepresents a J2EE application, an EAR archive. It is
a special type dfeployableObject.

« DDBeanis a component used for introspecting a deployment descriptor. It ek-
tracts deployment descriptor information on behalf of the server plugin. It ¢
represent all or part of a module’s deployment descriptor.

« DDBeanRootis the topmosbbBean for a given module’s deployment de-
scriptor.

» XpathListener receiveXpathEvents.

3.1.1 javax.enterprise.deploy.model.exceptions package

« DDBeanCreateExceptions thrown when a DDBean object could not be cre
ated for the root of a named XML instance document.

10

3.2 Tool Provider Classes

» XpathEventis an event thatidentifie®Bean objects being added, removed,
or changed in a deployment configuration.

3.3 Tool Provider Interfaces Diagrams

Figure 3.1 shows the relationship of the primary interfaces described above to
each other and to a deployment tool. The figure shows the logical relationships of
the elements; it inot meant to imply a physical partitioning of elements on
machines, into processes, or address spaces.

In figure 3.1 the tool is preparing to deploy the J2EE applicatiGrore. ear.
This EAR file contains a deployment descriptor for itself and two sub-modules:
customer.jar, an EJB modulestoreFront.war, a WEB module as a web service. |

The tool creates m®eeApplicationObject and associates thgstore.ear
file with it. The J2eeApplicationObject’s function is to provide access to the EAR
file's contents. It is an abstract container for its sub-modules and deployment
descriptor.

A J2EE module contains one or more deployment descriptors. Each |
deployment descriptor has associated with itbmBeanRoot bean. TheDDBean-
Root bean is the reference to the deployment descriptor root.

Zero or morebDBean Objects may be associated with the deployment
descriptor. AbDBean represents a fragment of a deployment descriptor. The bean
contains the text of an XML tag. The server plugin code designates which XML
tag information is to be extracted. For example the Platform Product Provider
might request the information for all tkev-entry XML tags for all the session
beans in the EJB deployment descriptobbBean would be provided for each
env-entry tag found in the file. ThebBean would contain the text for thewv-
entry.

The primary function of thebBeanRoot andbbDBean beans are to extract data
from the deployment descriptor on behalf of the Platform Product Provider’s
code.

Deployment Tool
| T T
L T
~7 IeaApplicaticDbject I
| i mmEStere.ear A
| / ’
|)
| Jr__, applicatiormy *
4 M, -
S ¢ [Hean Bood
| | / TIL"_— ety
! I
/ foo——
| / J _ DDBean T T
| Do 1 ect
j DD Bean) " DeployableCbject
—— m
| |" S storeFrowtwar
| wetr.w!

a-'-'-'_'___ o
| '. DD Beankoot
| .___.-'—'_-_'-\-\.H‘ II '.II '\-__—'_'_-

o ey | — e —
| . 3 " DDBean >
" DeplayableChject ™, | ' ooBen
I|II £ CUERITME, fobr I'n — -
I '.III .h DD Eean _::"
| |
e r vyl
| il . I"'. mh&eq{.‘e xml
| I'l, 11*' H" = £ | »
a | DDBeanRon T |, '-_" ¢ rr[:uBunEml:'
l| III L1 %
!] b
| II"I. | ¢ DbBen | N (DDBem)
b | — —— ’ I -
I -_m '|III III II.__.,-'—'_ DDEsan T -““-,_‘H s ;::I
| "-x_"‘-‘ I|| "—\—__,_—'—"- J H-\""-—_:—"'--- -l-
| >, ——— -~
e -'.-.
| x}c__ - - :
\‘"\-\.,_ -~
| s -
—_— ——

Figure 3.1 J2EE Application

11

12

In figure 3.2 the tool is preparing to deploy a stand-alone J2EE module,
storeFront.war. It creates @eployableObject Object instead of a
J2eeAppTlicationObject Object because it only needs to represent a single
module.

web.xml

LN

Figure 3.2 J2EE Standalone Module

DeployableObject

StoreF ront.war

DDBeanRoot

13

3.4 J2EE Product Provider Interfaces

The interfaces for the J2EE Product Provider are contained in the package
javax.enterprise.deploy.spi.

» DeploymentManageris the access point for the Tool Provider to a J2EE Plat-
form Product’s deployment functionality.

» DeploymentConfigurationis the top-level component for deployment con-
figuration information. It is a container for all J2EE platform product-specific
configuration objects.

» DConfigBeanis a JavaBeans component used for conveying platform-prod-
uct-specific deployment configuration information to the tool. It represents all
or part of a deployment descriptor.

» DConfigBeanRootis the topmosbConfigBean for a given deployment de-
scriptor.

» Target represents an association between a server or group of servers and a
location to deposit a J2EE module that has been properly prepared to run on
the server or servers.

» TargetModulelD is a unique identifier associated with a deployed application
module. EachlrargetModuleID represents a single module deployed to a single
server target.

15

3.4.1 javax.enterprise.deploy.spi.factories package

» DeploymentFactoryis a deployment driver for a J2EE platform product. It re-
turns abeploymentManager oObject that represents a connection to a specific
J2EE platform product.

3.4.2 javax.enterprise.deploy.spi.status package

* ProgressObjecttracks and reports the progress of potentially long-lived de-
ployment activities.

» ProgressEventis an event that indicates a status change in a deployment ac-
tivity.

» DeploymentStatusis an object that contains detailed information about a sta-
tus event.

» ProgressListenerreceives progress events.

» ClientConfiguration is a JavaBeans object that installs, configures and exe-
cutes an application client.

3.4.3 javax.enterprise.deploy.spi.exceptions package

+ ConfigurationException is thrown when th€onfigBean could not be creat- |
ed.

» DeploymentManagerCreationExceptionis thrown when @eploymentMan-
ager could not be created by theploymentFactory.

* InvalidModuleException is thrown when the J2EE archive module type is
unknown by th@eploymentManager.

e TargetExceptionis thrown when th&arget is unknown by th@eployment-
Manager.

» BeanNotFoundExceptionis thrown when the childonfigBean could not be
found by the parertonfigBean.

» DConfigBeanVersionUnsupportedExceptioris thrown when the DConfig-
Beans for a particular J2EE platform verions can not be provided by the plat-
form.

16

+ ClientExecuteExceptionis thrown when the application client run environ-
ment could not be setup properly.

3.5 J2EE Product Provider Interfaces Diagram

Figure 3.3 shows the relationship of the primary interfaces described in
section 3.2 to each other and to a J2EE product . This figure shows the logical
relationships of the elements; itrist meant to imply a physical partitioning of
elements into processes, address spaces or on machines.

In figure 3.3, th@eploymentFactory is an object which a tool discovers and
uses to retrieves an instance of the J2EE prodagti®ymentManager object.

TheDeploymentManager provides the J2EE product’s deployment
functionality. It is the intermediary between the tool and the server.

A Target oObject is a reference to a server. It can represent a specific
application server installation on a single host or it can represent a cluster of
servers over many hosts.TArget represents an atomic element; for example a
Target can represent a cluster of servers as a single deployable target. The tool
and Deployer need not know the server configuration thatgt represents. A
DeploymentManager can have many deployment targets.

A TargetModulelD object is a reference to a J2EE module that has been
deployed to a Target. A module’s TargetModulelD is unique within the platform’s
domain. The association of a TargetModulelD with a module exists only as long
as the module is deployed. Once the module is undeployed the TargetModulelD
can be reassigned. The TargetModulelD is used by the Deployer to identify the
module on which the DeploymentManager is to perform administrative
operations, such as start and stop.

A ProgressObject provides a means to monitor and report on the status of a
deployment operation. There are several operations not depicted in this diagram
for which ProgressObject objects are provided.

One of the functions of theeploymentManager is to configure J2EE modules
for deployment. Some of the configuration information requires input from the
Deployer. ThedConfigBean objects provide the list of external references and

17

other deployment information the platform needs resolved in order for the module
to be deployed.

TheDeploymentConfiguration object is a container for all tih€onfigBeans
created during a deployment sessiomcAnfigBeanRoot Object is associated
with a deployment descriptor via theBeanRoot object. ADConfigBeanRoot
object can have zero or marenfigBean child objects.

A DConfigBean represents deployment information that is associated with
XML tag (see section 5.2) information in a deployment descript®CdhfigBean
provides zero or more XPaths that identify the XML information it requires for
evaluation. AbConfigBean is associated with BDBean (see section 3.3) provided
by a tool. AbConfigBean Object can have zero or mar&nfigBean child
objects.

The primary function of theConfigBeanRoot andbdConfigBean beans is to
tell the tool what data it needs from the deployment descriptor and to allow the
Deployer to edit the deployment configuration information the platform requires
for the J2EE module.

18

Platform Provider

DeploymentFactory

DeploymentManager

ProgressObject

ProgressObject

DeploymentConfiguration

DConfigBeanR oot
DConfigBean

DConfigBean
DConfigBean

Target

TargetModulelD

| TargethloduleID

19

Figure 3.3 Product Provider Interfaces Diagram

3.6 Shared Classes

There are several constants that both the Tool Provider and Platform Product
Provider use. These constants have been grouped into four classes and are
provided in the packagiavax.enterprise.deploy.shared.

3.6.1 javax.enterprise.deploy.shared package

* ModuleType provides values used to identify the J2EE module type repre-
sented by @eployableObject instance.

» DConfigBeanVersionTypeprovides values used to identify the J2EE version
for which the deployment descriptor beans and deployment configuration
beans where compiled.

* CommandType provides values use IpgploymentStatus to identify the de-
ployment operation it represents.

» StateTypeprovides values use IgploymentStatus to identify the state of
the deployment operation.

» ActionType provides values use B¢ploymentStatus to identify if a cancel
or stop action on the current operation is being performed.

3.6.2 javax.enterprise.deploy.shared.factories package

« DeploymentFactoryManageris a central registry for DeploymentFactory ob-
jects. The tool discovers the DeploymentFactory objects in a Product Provid-
er's supplied JAR file and registers them with the DeploymentFactory-

Manager. The tool contacts the DeploymentFactoryManager when it requires
a DeploymentManager.

3.7 Environment Requirements

Each version of the Java 2 Platform Enterprise Edition Specification defines
the Java Compatible™ runtime environment it requires. It is a version of the Java
2 Platform, Standard Edition (J2SE). This specification requires its runtime
environment to be the same J2SE edition the platform requires. This information
can be found in the platform specification in the section titled, "Container
Requirements".

Tools must be able to access bagloymentManager, DConfigBeans and
helper classes through the classpath or via a classloader.

3.7.1 Tool's Security Permission Set

TheDeploymentManager must have a minimum set of security permissions in
the tool’'s environment in order to perform its functions. They are listed below.

TABLE 3-1 Security Permission Set

Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.net.SocketPermission * connect
java.net.SocketPermission localhost:1024- accept,listen
java.io.FilePermission * read/write

java.util.PropertyPermission * read

21

A

DeploymentManager

TheDeploymentManager isS a service that enables J2EE applications to be deployed
to J2EE platform products . Itis a deployment tool’s access point to a product’s
deployment functionality. ThgeploymentManager provides administrative
operations for

Configuring an application.

Distributing an application.

Starting the application.

Stopping the application

Undeploying the application.

4.1 DeploymentManager Requirements
- At least on@eploymentManager object must be provided per J2EE product.

+ ThebDeploymentManager must be able to distribute a configured J2EE module
to the designated targets.

- A DeploymentManager can run eitheconnected tor disconnected fromnts
J2EE product. AeploymentManager running disconnected from its J2EE
product can only configure modules but not perform administrative opera-
tions. It might not have access to any product resources. If any of the admin-
istrative operations, distribute, start, stop, undeploy, or redeploy are called,
anIllegalStateException must be thrown. A disconnecteéebloyment-
Manager is acquired by calling the single argument metbgd oymentFac-
tory.getDisconnectedDeploymentManager(name).

22

4.2

A connectedeploymentManager is associated with a specific J2EE product
instance. It is identified by a URL and may require a valid user name and
password. ThiseploymentManager can use the product resources to assistin
the resolution of deployment configuration information and can execute all
administrative operations.

A DeploymentManager running in connected mode can be notified by the tool
torun in disconnected mode. This notification signals t@#pad oymentMan-

ager that it may release any J2EE resource connections it had established
during deployment configuration and clean up resources. It should allow any
active operations to finish processing. Tie@1loymentManager must throw
anIllegalStateException if any administrative operations are called when
running in disconnected mode.

- TheDeploymentManager processes only properly packaged J2EE application

or stand-alone module archives (EAR, JAR, WAR, and RAR) files. It does
not participate in the predeployment assembly or packaging of the archives.

DeploymentManager Methods

- getTargetsreturns the list of server targets to which thég1oymentManager

supports deployment.

- getAvailableModulesreturns the list of all J2EE modules available on a des-

ignated server target. The module may or may not currently be running.

- getRunningModulesreturns the list of all J2EE modules currently running

on a designated target server.

- getNonRunningModulesreturns the list of all J2EE modules currently de-

ployed but not running on a designated target server.

- createConfiguration returns the object that can evaluate and generate the

J2EE product’s application runtime configuration information.

- distribute moves the complete deployment bundle, module, configuration

data and any additional generated code to the target.

- start makes an application runnable and available to clients. This operation

is valid forTargetModuleIDs that represent a root module. A roatgetMod-
uleID has no parent. The rodirgetModuleID module and all its child mod-
ules will be started. A childargetModuleID module cannot be individually
started. If the application is currently running no action should be taken and

23

no error should be reported. The start operation is complete only when this
action has been performed for all the modules.

- stopmakes a running application unavailable to clients and stopped. This op-
eration is valid forargetModuleIDSs that represent a root module. A root
TargetModuleID has no parent. The rodirgetModuleID module and all its

child modules will be stopped. A chilthrgetModuleID module cannot be in-
dividually stopped. If the application is currently not running, no action
should be taken and no error should be reported. The stop operation is com-
plete only when this action has been performed for all the modules.

- undeployremoves the application from the target. This operation is valid for
TargetModuleIDS that represent a root module. A roatgetModuleID has

no parent. The roatargetModuleID module and all its child modules will be
undeployed. A childargetModuleID module cannot be undeployed. The
root TargetModuleID module and all its child modules must be stopped be-
fore they can be undeployed. The undeploy operation is complete only when
this action has been performed for all the modules.

- isRedeploySupporteddesignates whether this J2EE product provides appli-
cation redeployment functionality. A value of true means it is supported.

- redeploy is anoptional operation. Redeploy replaces a currently deployed
application with an updated version. The runtime configuration information
for the updated application must remain identical to the application it is up-
dating.

When an application update is redeployed, any transition of clients from the
existing application to the application update must be transparent to the cli-
ent.

This operation is valid for TargetModulelDs that represent a root module. A
root TargetModulelD has no parent. The root TargetModulelD module and
all its child modules will be redeployed. A child TargetModulelD module
cannot be individually redeployed. The redeploy operation is complete only
when this action has been performed for all the modules.

- releasesignals to th®@eploymentManager that the tool does not need it to
continue running connected to the J2EE product. This is a signal from the
tool that it wants to run in disconnected mode or that the tool is preparing to
shutdown.

When release is called, tbep1oymentManager cannot accept any new oper-
ation requests. It can release any J2EE resource connections it had estab-

24

lished during deployment configuration and clean up resources. It should
finish processing any active operations.

- getDefaultLocalereturns the default locale supported by this implementa-
tion. A default locale must be provided.

- getCurrentLocale returns the active locale of this implementation. A cur-
rent locale must be provided.

- setLocaleset the active locale for this implementation. Support for locales
other than the default locale is optional.

. getSupportedLocalegeturns a list of supported locales of this implementa-
tion. At minimum it must return the default locale.

- isLocaleSupportedreturngrueif the specified locale is supported afadse
if it is not.

- getDConfigBeanVersionreturns the J2EE platform version number for
which the deployment configuration beans are provided.

- isDConfigBeanVersionSupportedeturns true if the deployment configura-
tion beans support the J2EE platform version specified otherwise it returns
false.

- setDConfigBeanVersiorsets the deployment configuration beans to the
J2EE platform version specified.

4.3 Starting and Stopping Applications

The time at which an application’s running environment is initialized or shu

down is not specified. A vendor may choose to initialize an application’s runninL
environment when the archive is distributed to the system or wait until the star
action is called. The only requirement is that the application is not available to
clients until the start action is called. Similarly a vendor may choose to shut down
a running application’s environment when stop is called or wait until undeploy |s
called. The only requirement is that the application is made unavailable to clierjts
when the stop action is called.

25

4.4 Internationalization

Tool Providers and plugin providers may choose to offer internationalized |
Deployment APl implementations to their users. Support for locales other than the
default locale is not required. A locale setting is in effect for all the Deployment
API subpackages in the provider’s implementation for the duration of a
deployment session.

4.5 Object Interaction Diagrams for
DeploymentManager

This section contains object interaction diagrams (OID) that illustrate the
interaction of the parties that participate in an application deployment. The
diagrams illustrate a hypothetical deployment session between a Deployer, a tool,
and a J2EE productigploymentManager. Where possible the corresponding
method calls and data types are used. A general description of the interaction is
provided for those action that are implementation-specific.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

Distribute Application

Deployer Tool DeploymentManager ‘ J2EE Platform
| | Write all the deployment | |
| configuration information to a file | |
| ar Qutputlitream.
b ; -
regurﬂ‘ argets | s Targeta) ,,] |
L | Target[] | |
e |
seieé'l‘ Targets 44 | |
a'i.rrr{bure Application | -,~| |
distribl.]t&(Target[], standard J2EE archive, depfoyment plamn) |
| L, ProgressObject Vendor—specific mechanism lo
| s | establish aperation s
| | mir’dal!e et |
| | wupdate Dlepio}menLS‘raIm |

ProgressOb_jeBtL stener handleFProgressEvant! Progresr; Ewant) |

| | | generate Reeded corie

| updaIT Deploynentitatusr

|
| move bundle |

| -
T Lt

ProgressOb EotLi.stener.han dleProgressEvent(Progrﬁ.s.sEvcnt)
L |

| | wpdate|DeploymentStatis |
Progress Ot1j¢ctL'1.st¢ner. handleProgress Event(Progrr.ssEvent) |
-

report conpleted distribute

l | | |

>
| raleaze)

reledse p&Lﬁmm FEFOUFCES

+ + 3 v

Figure 88Info.4.1 Distributing an Application

Start Application

Deployer Tool DeploymentManager ‘ J2EE Platform
| | | |

l »

regu est Targ ety L Ll |
E d € eetTarzets])

Targst[]
| |

-
-

aelect Il"argerf e

-;| Vendor—specific wechunism

F__

réigi eln‘ >
TargetM odulelDy getNFnRunnm shlodules (oduleType, Targe]t[]) to provide module fds“
| < | TargetModuleID[] | |
relect > | |
TargeJM odulelly
ﬂ‘mjp.‘ #| >| |
| start (TarzathblodulsID[T | |
| » ProgressObject Vendor—specific mechanism to
| | o i provide operation pn*gress
| | | start

|
>

| | | progresy hotification |
"
.

wprcdat ¢ DeploymentStatus

| Progre.ss@b_jaotLLstener.handleProgressEvent(ProgessEvent) |
4
| repor completed sarnt

o
| o [|

I

l | rel=ase () '| |

| relecye Fimform FEFOuFC ey

v Y J '

Figure 88Info.4.2 Starting an Application

28

Stop Application
Deployer Tool DeploymentManager ‘ J2EE Platform

| | | |

reguest Targets | | "ﬁ]' |
eetTargeta)

| - | Targst]] | |
select h"arger,r —DJ | |
requ eﬁ » | =| Yendor—specific mechlcmism Lo
Targ 91‘|M ocduleIDy g.]etRunn mngModulesimodulaType, Targetq]) provide modile ids |

| TargathioduleID] |

< '
select 4.1 | |
Targ eliM odulelDy
stap | =J| La| |

stop(tarzethlodulsID[])
, Vendor—specific

| 4 ProgressGbject | wechanis to provide

| | | OPERLLION Progress |

| | —= >

progresy notification
| [1
| [~ I
| | wprckate lDepEoymenISIaiuf |

Progres.sObjeotLi.st&Er.handleProg:res.sEvent(Progre.ssEvent]

| repan coyric).tered Aap |
| | »

I raleagel) i
l |

v v !

Figure 88Info.4.3 Stopping an Application

relecye A.hlj‘orm FEROWFCer |

Undeploy Application

Deployer Tool DeploymentManager ‘ J2EE Platform
Stogd the runhing modulesto be| | |
un.a!fp.ioyea!. Seefigure 4.3 | | |

umepioy > |
| | |

| | ProgressObject | Vendor—specific mechanism
|4 Lo provide operation |

| | PrOZress

| a

undeploytarzethbloduls ID T

remove'modu.!e

| | wpdote D|ep£0 nentitates |

| Progress Objeotthtener.handleProgr&s.s Event(Progress Ev{ant) |

]

repart completed undeploy
- |
|" I

| | relzage()

-
| |
| releqse platform reyource

Figure 88Info.4.4 Undeploying an Application

30

4.6 DeploymentManager and the J2EE Management
Specification (JSR 77)

The J2EE Management Specification defines a model for platform
management. Deployment is an integral part of J2EE platform management.
Deployment depends on management functionality to start installed applications,
stop running applications, and report the status of applications. This section
describes the recommended mappings of the DeploymentManager functionality
to the management model.

46.1 Listing Deployed Modules

The management model provides access to all managed objects on the J2EE
platform through the J2EE Management EJB component (MEJB). The MEJB is
registered in the Java Naming and Directory Interface ™ (JNDI) service. The
DeploymentManager may use the MEJB to acquire the list of deployed modules
on the platform. See chapter 7, "J2EE Management EJB" in the Java 2 Enterprise
Edition Management Specification.

4.6.2 Module Start and Stop

The management model provides a facility for state management of managed
objects. This is an optional feature. The state management facility allows
applications to start and stop deployed modules. The DeploymentManager may
use this facility to start and stop modules that support state management. See
chapter 5, "State Management" in the Java 2 Enterprise Edition Management
Specification.

31

5

Deployment Configuration
Components

The deployment plan is a file or a stream that contains the deployment configuration
information. The data is the J2EE product provider-specific information required in
order to deploy the application to the product provider’s platform. It is
recommended that the file format be XML.

5.1 Runtime Configuration Components

The components that present to the Deployer the dynamic deployment
configuration information for a J2EE product are JavaBeans. This specification
requires the JavaBeans API Specification version 1.01 be followed for these
components.

The deployment configuration components are the contracts between the
J2EE Product Provider and the Tool Provider. The components are as follows:

» Deployment Configuration Beans

» Deployment Descriptor Beans

511 Deployment Configuration Beans

Deployment Configuration Beans (config beans for short) are the components
that present to the Deployer the dynamic deployment configuration information:
the external dependencies that must be resolved. They are JavaBeans components
that enable the deployment information to be presented as simple property sheets
with property editors or with custom wizards. The properties are expected to hajve

32

default values when possible. (It is important to note that the Deployer’s
acceptance of the default values does not guarantee optimum performance on the
J2EE Provider’s product.) The J2EE Product Provider provides the configuration
beans for its product.

A config bean represents a logical grouping of deployment configuration
information that will be presented to the Deployer. A config bean has a one-to-ope
relationship to the text of an XML tag in a deployment descriptor through its
association with abBean. A config bean may contain other config beans and
regular JavaBeans. It provides zero or more XPaths for XML information it
requires. The topmost parent config bean is the root config bean which represents
a single deployment descriptor file; it is associated withBaanRoot.

Config beans can be represented as a tree structure. The root of the tree if a
DConfigBeanRoot. The nodes of the tree aredafigBean objects. A config bean

with zero XPaths or one which has no child config beans is an end node in the
tree.

An application can contain many J2EE component modules. A component
module contains one or more deployment descriptors. A component module myist
contain a deployment descriptor for its component type. This is the primary
deployment descriptor for the module. See the corresponding component
specification for details. It may contain other deployment descriptors that extefqd
its basic component functionality. These are secondary deployment descriptors,rfor
the module. See the Web Services 1.1 specification.

A DeploymentConfiguration Object is a container for altonfigBeanRoot
objects. They represent primary deployment descriptobSoA¥igBeanRoot
object is a container for any secondary deployment descriptors in the same
component module.

51.1.1 DConfigBean Methods
DConfigBean is a bean for configuring a vendor-specific deployment
descriptor or a subset of one.

» getDConfigBeanreturns the server-specific configuration bean for a given
sub-element of the standard deployment descriptor.

» getDDBeanreturns th@bBean storing the concrete deployment descriptor
fragment this QonfigBean is configuring.

» removeDConfigBeanremoves a child DonfigBean from this bean.

» getXpathsreturns a list of XPath strings representing the deployment de-
scriptor information that BDBean must retrieve

» notiyDDChangeindicates that thebsean provided in the event has changed
and that this bean or its child beans need to reevaluate themselves.

» addPropertyChangelListenersupports standard JavaBeans property change
notification registration.

» removePropertyChangelistenersupports standard JavaBeans property
change notification de-registration.

5.1.1.2 DConfigBeanRoot Methods

DConfigBeanRoot IS a config bean associated with the root of a primary
deployment descriptor. BConfigBeanRoot Object may have chiliConfigBean
objects representing secondary deployment descriptors.

» getDConfigBeanreturns aConfigBean oObject for ebDBeanRoot Of a second-
ary deployment descriptor.

5.1.1.3 DeploymentConfiguration Methods

DeploymentConfiguration iS a container for all the server-specific
configuration information for a single application

» getDConfigBeanRootreturns the vendor-specificonfigBeanRoot for a pri-
mary deployment descriptor.

» getDeployableObijectreturns the top-levéleployableObject for this con-
figuration.

» removeDConfigBeanremoves the DbnfigBeanRoot and all its children.
« restore restores a deployment configuration session that was saved to disk.

* restoreDConfigBeanrestores the designatetbnfigBean that was saved to
disk.

» savewrites a deployment configuration session to disk.

» saveDConfigBeanwrites the designateddnfigBean to disk.

34

5.1.2 Deployment Descriptor Beans

Deployment Descriptor Beans (DD beans for short) are the components that
present the text, based upon the XPath string, back to the config bean. They are
the mechanism for reading and extracting data from the application’s deployment
descriptor files. The Tool Provider provides the DD beans for its product.

A DD bean is associated with a deployment descriptor. It can have child OD
beans. The topmost DD bean is the root DD bean, which represents a single
deployment descriptor file.

A deployable J2EE application can be an EAR file that contains one or more
modules or a single stand-alone module (JAR, WAR, or RAR) file. There are
separate configuration-related containers for these two categories of deployable
modules:

» Thel2eeApplicationObject objectisthe container for an EARfile. Itis a spe-
cial type ofbeployableObject that contains aeployableObject for each
module in the archive. It provides accessor methods to access the information
in a singledeployableObject or a group of them, which are provided by the
Tool Provider.

» TheDeployableObject object is the container for a single module. It maintains
references to the deployment descriptor filesptiBeanRoot objects and all |
the child DD beans for the module.

5.1.2.1 DDBean Methods

DDBean is a bean that represents a fragment of a standard deployment
descriptor.

» getChildBeanreturns a list of childbBean objects based upon the designated
XPath.

» getRootreturns thebBeanRoot 0bject of this bean.
» getTextreturns the deployment descriptor text associated with this bean.

* getld returns a tool-specific reference for attribute ID on an element in the de-
ployment descriptor.

» getXpath returns the original XPath string provided by the DConfigBean.

35

getAttributeNames returns the list of attribute names associated with the
XML element.

getAttributeValue returns the string value of the named attribute.

addXpathListener supports registration of XPath listener objects.

removeXpathListener supports de-registration of XPath listener objects.

5.1.2.2 DDBeanRoot Methods

DDBeanRoot IS abDDBean that represents the root of a deployment descriptor.

» getDeployableObijectreturns the containin@eployableObject.
« getModuleDTDVersionreturns the DTD version number.

» getDDBeanRootVersionreturns the version number of an XML instance
document.This method is replacing the methods DDBeanRoot.getModuleT-
DVersion and DeployableObject.getModuleDTDVersion.

 getFilenamereturns the filename relative to the root of the module of the
XML instance document this DDBeanRoot represents.

« getTypereturns the deployment descriptor type.

5.1.2.3 DeployableObject Methods

DeployableObject is a bean that represents a J2EE module within an EAR file
or an independently deployable module.

» getChildBeanreturns a list obDBean objects associated with the designated
XPath.

 getClassFromScop returns a class from the component module associated
with this deployment descriptor.

» getModuleDTDVersion returns the DTD version number of the module’s
component deployment descriptor file. This method is being deprecated.
With the addition of multiple deployment descritors in components for J2EIE
1.4 this method is being replaceddmBeanRoot . getDDBeanRootVersion.

» getDDBeanRootreturns thebBeanRoot 0bject for the component’s primary
deployment descriptor.

» getDDBeanRootreturns a DDBeanRoot object for the XML instance docu-
ment hamed in the input parameter.

36

getTextreturns the deployment descriptor text associated with the designated
XPath.

entries returns an enumeration of the module’s file entries.
» getEntry returns the InputStream for the given file entry name.

» getTypereturn the module type of thigployableObject.

5.1.2.4 J2eeApplicationObject Methods

J2eeApplicationObject is a bean that represents a J2EE application EAR
file. It is a special type dfeployableObject. It has aDeployableObject for each
module in the archive.

» getChildBeanreturns a list obbBean objects based upon the designated
XPath and module type. |

» getDeployableObjectreturns @eployableObject based upon a URI.

» getDeployableObjectgeturns a list 0beployableObject objects based upon
the designated module type. |

» getModuleUris returns the module based upon its URI.

» getTextreturns the deployment descriptor text associated with the designated
XPath and module type.

» addXpathListener supports registration of XPath listener objects by modulg
type.

* removeXpathListener supports de-registration of XPath listener objects by
module type.

5.2 Multiple Deployment Descriptor Files

A J2EE component module contains one or more deployment descriptor fijes
and zero or more non-deployment descriptor XML instance documents. A modyle
must contain a component specific deployment descriptor file. It may contain ope
or more deployment descriptor files that define extra functionality on the
component for example webservice.xml and it may contain zero or more non-
deployment descriptor XML instance documents.

The tool is required to present the server pluginsaanRoot object for each
deployment descriptor file in the module. MetiegloymentConfigura-
tion.getDConfigBean must be called with thEbBeanRoot Object for the
component specific deployment descriptor and metitedfiBeanRoot . getDCon-
figBean must be called with thebBeanRoot object for the deployment descriptor
that extends the base component functionality.

The server plugin provider calls methmgbloyableObject.getDDBeanRoot
for each non-deployment descriptor XML instance document it requibBBean-
Root Object for.

5.3 Ul Contract between Tool and Server Plugin

JavaBean components present the dynamic deployment configuration
information for a J2EE plugin to the deployer. The JavaBeans architecture wg
chosen because of its versatility in providing both property sheets and propert
editors, as well as sophisticated customization wizards.

The JavaBean GUI mechanism, that a plugin provider implements in order
enable their DConfigBeans to be displayed by a deploy tool is not specified. T
plugin provider may choose to provide a Customizer for one DConfigBean, a
Property Editor for a complex datatype for the Property Sheet of another
DConfigBean, and to use the default Property Editors for the Property Sheet of y
a third DConfigBean. See the JavaBeans API Specification version 1.01.

The manner in which a tool analyzes a DConfigBean and displays it is not

specified. Itis recommended that any Customizer or Property Editor provided by

the plugin vendor take precedence over similar functionality provided by the td
vendor.

It is expected that a Property Editor will be provided by a plugin vendor for
any complex datatype in a DConfigBean that is to be edited by the Deployer. T
Property Editor should be implemented and made available to a tool according

37

(0]
he

et

ol

to

the guidelines defined in the JavaBeans API Specification version 1.01.

54 ModuleType Enumeration Objects

The J2EE module types are provided in the class
javax.enterprise.deploy.shared.ModuleType. Its values are:

ModuleType.EAR indicates the module is an EAR archive.

ModuleType.EJB indicates the module is an Enterprise Java Bean archive

ModuleType.CAR indicates the module is an Client Application archive.

ModuleType.RAR indicates the module is an Connector archive.

ModuleType.WAR indicates the module is an Web Application archive.

5.5 Deployment Descriptor Document Version

All deployment descriptors must indicate the document type definition, DT
or XML Schema version being used. The version number resides in a differen
location in the DTD than in an XML Schema document. Modules packaged usir

N>

g

J2EE 1.3 and 1.2 tools are in DTD format. Modules packaged using 1.4 tools gre

in XML Schema format.

551 DTD Document

The version number of the an XML DTD based deployment descriptor
instance document is defined in the DOCTYPE statement. The DOCTYPE
statement contains the version number in the label of the statement.

The format of the DOCTYPE statement is:
<IDOCTYPE root_elemenPUBLIC "-//organization//label//language" "location"

» root_elementis the name of the root document in the DTD.

 organization is the name of the organization responsible for the creation and

maintenance of the DTD being referenced.

* labelis a unique descriptive name for the public text being referenced.

39

« languageis the ISO 639 language id representing the natural language encod-
ing of the DTD.

* location is the URL of the DTD.
An example J2EE deployment descriptor DOCTYPE statement is:

<IDOCTYPE application-clienPUBLIC
"-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"
"http://java.sun.com/dtd/application-client_1_3.dtd"

In this example the label is, "DTD J2EE Application Client 1.3", and the DTD
version number is 1.3. A call tetDDBeanRootVersion would return a string |
containing, "1.3".

55.2 XML Schema Document

The version number of the an XML Schema based deployment descriptor
instance document is defined in ther'sion” attribute on the root element.

<application xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
version="1.4">

In this example the value of the version attribute is 1.4. A calidDDBean-
RootVersion would return a string containing, “1.4".

5.6 DConfigBean Version

Each version of the Java 2 Platform Enterprise Edition Specification defines
the Java Compatible™ runtime environment it requires. It is a version of the Java
2 Platform, Standard Edition (J2SE). This specification requires the J2EE Product
Provider to provide its Deployment API implementation based upon this runtime
environment, and the Tool Provider to support the runtime environment. The
DConfigBean Version number is the version number of the J2EE platform for
which the APIs were built.

40

It is required that the same version of the Tool Provider's APIs and the J2EE
Provider's APlIs interact. It is not required that differing versions of the APIs
interact.

5.6.1 DConfigBeanVersionType Enumeration Objects

The platform version number is provided in the class
javax.enterprise.deploy.shared.DConfigBeanVersionType. Its values are:

» DConfigBeanVersion.V1_3ndicates the beans were built for the J2EE 1.3
platform.

» DConfigBeanVersion.V1_3 lindicates the beans were built for the J2EE
1.3.1 platformThis constant should never be used. Use V1_3 instead.

» DConfigBeanVersion.V1_dindicates the beans were built for the J2EE 1.4
platform.

5.7 XPath Syntax

XML Path Language (XPath) Version 1.0 is used as the path notation for
navigating the hierarchical structure of the deployment descriptor document.
Only the AbsoluteLocationPath and RelativeLocationPath elements of the XPath
standard are used by this API, and only a subset of these two elements’ grammar
is used. The XPath Location Step (that is an axis specifier, a node test, and
predicates) is not used in the AbsoluteLocationPaths or RelativeLocationPaths
specified by the configuration beans in this API. The path element, ‘.’ selects the
context node and ‘..” selects the parent context node. What remains are
AbsoluteLocationPaths and RelativeLocationPaths consisting of ‘., ‘.., and XML
tags separated by forward slashes (/).

—

DTD-based and XML Schema-based deployment descriptors have differe
XPath naming requirements. This is due to the use of namespaces in XML
Schema but not in DTD-based deployment descriptors. The namespace featufe
requires the addition of a namespace prefix to each XML element in the XPath fpr
a J2EE XML Schema-based instance document. Each element in an XPath must
be specifically qualified with the namespace prefix that is bound to the
namespace’s URI. The format is:

41

< prefix>:<XML tag>

Prefix is a name associated with the namespace URI. The colon (3) is a
separator between the prefix and the XML tag.

9%
o

A namespace is uniquely identified using a URI. A prefix may be associat
with a namespace URI. The reserved attriluias is used to define a
namespace without an associated prefix; the reserved atkibuse is used to
defined a namespace with an associated prefix. A namespace defined without a
prefix is treated as part of the default namespace. The element in which the
default namespace is specified and all the contents within the element are
associated with the XML Schema Namespace. If there is no prefix defined forfa
namespace, the <prefix>: is not used in the XPath element qualifier, only the
<XML tag> is given. Since namespaces are not supported in DTD-based
deployment descriptors, the <prefix>: is never used in XPath element qualifief.

The required namespace for J2EE XML Schema-based deployment
descriptors is http://java.sun.com/xml/ns/j2ee. There is no required prefix for th
namespace. The prefix can either be specified by the creator of the instance
document or it can be left unspecified and thus part of the default namespact

S

N4

To build a proper XPath string a J2EE Product Provider plugin will need to
determine the active namespaces for elements in a deployment descriptor
instance document, by analyzing the attributes on the instance document
elements.

571 AbsoluteLocationPath Syntax

An XPath whose first character is a forward slash '/’ designates an
AbsoluteLocationPath. It starts at the root of the document.

An XPath whose first character is a forward slash '/’ may be followed by zero
or more fully qualified element names separated by a forward slash. An XPath
consisting of a single forward slash designates the document root.

A DTD based deployment descriptor does not use namespaces, thus the
plugin provider does not need to determine the active name space and each fyilly
qualified element consists of the XML tag only. In the example below the

42

AbsoluteLocationPath to the two env-entry tags in the EJB deployment descripfor

would be:
/ejb-jar/enterprise-beans/session/env-entry

<ejb-jar>
<enterprise-beans>
<session>

<env-entry>
<env-entry-name>ejb/mail/SendMail
</env-entry-name>
<env-entry-type>java.lang.Boolean
</env-entry-type>
<env-entry-value>false</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>event/SignoutEvent
</env-entry-name>
<env-entry-type>java.lang.String
</env-entry-type>
<env-entry-value>ejb.SignoutHandler
</env-entry-value>

</env-entry>

</session>
</enterprise-beans>
</ejb-jar>

In the example below the plugin vendor would have determined that there |s
one active namespace. It is defined in the root element of the XML Schema baged
instance document. The J2EE namespace prefix is defined to be j’
xmlns:j="http://java.sun.com/xml1/ns/j2ee". The AbsoluteLocationPath to the
two env-entry tags in the EJB deployment descriptor would be:

/j:ejb-jar/j.enterprise-beans/j:session/j.env-entry

<j:ejb-jar xmlns:j="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
version="2.1">
<j:enterprise-beans>

<j:session>

<j:env-entry>
<j:env-entry-name>ejb/mail/SendMail

43

</j:env-entry-name>
<j:env-entry-type>java.lang.Boolean
</j:env-entry-type>
<j:env-entry-value>false</j:env-entry-value>

</j:env-entry>

<j:env-entry>
<j:env-entry-name>event/SignoutEvent
</j:env-entry-name>
<j:env-entry-type>java.lang.String
</j:env-entry-type>
<j:env-entry-value>ejb.SignoutHandler
</j:env-entry-value>

</j:env-entry>

</j:session>
</j:enterprise-beans>
</j:ejb-jar>

5.7.2 RelativeLocationPath Syntax

An XPath whose first character is not a forward slash ’/’, but that has one or
more qualified elements separated by a forward slash, designates a |
RelativeLocationPath. It starts from the current location in the document.

For example in a DTD based instance document the RelativeLocationPathjto
the twoenv-entry tags in the EJB deployment descriptor below would be the
following assuming that a previous XPath was simply "/*, which is a reference fo
the root of the file.

ejb-jar/enterprise-beans/session/env-entry

<ejb-jar>
<enterprise-beans> |
<session>

<env-entry>
<env-entry-name>ejb/mail/SendMail
</env-entry-name>
<env-entry-type>java.lang.Boolean
</env-entry-type>
<env-entry-value>false</env-entry-value>

</env-entry>

<env-entry>

44

<env-entry-name>event/SignoutEvent
</env-entry-name>
<env-entry-type>java.lang.String
</env-entry-type>
<env-entry-value>ejb.SignoutHandler
</env-entry-value>
</env-entry>
</session>
</enterprise-beans>
</ejb-jar>

In a XML Schema based instance document with a defined pyefire
RelativeLocationPath to the twdv-entry tags in the EJB deployment descriptor
below would be the following assuming that a previous XPath was simply "/",
which is a reference to the root of the file.

j:ejb-jar/j.enterprise-beans/j:jsession/j:env-entry

<j:ejb-jar xmlns:j="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
version="2.1">
<j:enterprise-beans>
<j:session>
<j:env-entry>
<j:env-entry-name>ejb/mail/SendMail
</j:env-entry-name>
<j:env-entry-type>java.lang.Boolean
</j:env-entry-type>
<j:env-entry-value>false</j:env-entry-value>
</j:env-entry>
<j:env-entry>
<j:env-entry-name>event/SignoutEvent
</j:env-entry-name>
<j:env-entry-type>java.lang.String
</j:env-entry-type>
<j:env-entry-value>ejb.SignoutHandler
</j:env-entry-value>
</j:env-entry>
</j:session>
</j:enterprise-beans>
</j:ejb-jar>

5.7.3 Multiple Namespaces

A J2EE XML Schema based document has one or more defined namespa
The required namespace for a J2EE deployment descriptedpis//
java.sun.com/xml1/ns/j2ee . A server vendor may define other namespaces
which define the data ind@ployment-extension tag. For exmaple the root
element of the document below defines two namespaces, the J2EE namespacq
the foobar.com namespace. Thobar.com namespace is used for elements
contained in théleployment-extension tag.

In creating an XPath string for the exmaple below it should be noted that the

45

Ces.

and

(€

is no prefix defined for the J2EE namespace, so only the element tag is used for

the associated elements and a prefikoobar is defined for namespace
foobar.com, xmlns:foobar="http://foobar.com", thus the
absoluteLocationPath to elemeiabbar: comment would be

/web-app/deployment-extension/foobar:comment

From the element above the RelativeLocationPatlhdbar:version
would be:

foobar:product/foobar:version

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:foobar="http://foobar.com"
xsi:schemal ocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd http://foobar.com
http://foobar.com/foobar.xsd"
version="2.4">
<servlet>
<servlet-name>MylnventoryServlet</servlet-name>
<servlet-class>com.acme.Inventory</servlet-class>
<init-param>
<param-name>debug</param-name>

<param-value>0</param-value>

46

</init-param>
<init-param>
<param-name>defaultCompany</param-name>
<param-value>ToysRUs</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<deployment-extension namespace="http://foobar.com"
mustUnderstand="false">
<extension-element xsi:type="foobar:mytype">
<foobar:comment>This component is generated by Foobar company
</foobar:comment>
<foobar:product>Foobar Build Environment</foobar:product>

<foobar:version>100.5</foobar:version>

</foobar:product>
</extension-element>

</deployment-extension>

An alternative implementation of the example above is to defingther
namespace in thizployment-extension element. The J2EE Product Provider
plugin would have had to analyze the attributes on the root element and the
deployment-extension element in order to generate the XPath strings.

A server plugin could get tifeobar:version data with the following
steps. One, determine the J2EE namespace prefix from the root element. Tw
create the AbsoluteLocationPatkeb-app/deployment-extension. Three,
evaluate eachlieployment-extension element for th&oobar namespace name.
Four, determine the prefix of tlieobar namespace. Five, create
theRelativeLocationPath:

extension-element/foobar:comment/foobar:product/foobar:version

<web-app xmIns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

O,

version="2.4">

47

<servilet>
<servlet-name>MyInventoryServlet</serviet-name>
<servlet-class>com.acme.Inventory</serviet-class>
<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>
</init-param>
<init-param>
<param-name>defaultCompany</param-name>
<param-value>ToysRUs</param-value>
</init-param>
<load-on-startup>1l</load-on-startup>
</serviet>

<deployment-extension namespace="http://foobar.com"
xmlns:foobar="http://foobar.com"
xsi:schemalocation=http://foobar.com
http://foobar.com/foobar.xsd"
mustUnderstand="false">
<extension-element xsi:type="foobar:mytype">
<foobar:comment>This component is generated byFoobar company
</foobar:comment>
<foobar:product>Foobar Build Environment</foobar:product>
<foobar:version>100.5</foobar:version>
</extension-element>
</deployment-extension>
</web-app>

5.8 Client Applications

The J2EE platform specification leaves the mechanism used to install the
application client to the discretion of the J2EE Product Provider. The specification
notes that there are a wide range of possibilities; a vendor might allow the
application client to be deployed on a J2EE server and automatically made
available to some set of clients. A vendor might require the J2EE application
bundle containing the application client to be manually deployed and installed on
each client machine or they could have the deployment tool produce an
installation package that can be used by each client to install the application client.

48

It is recommended that an application clieabb¥igBean be provided that
supports the vendor’s application client installation mechanism. For example a
J2EE product that requires the manual deployment of an application client bundle
might request the Deployer to provide a disk location where the bundle will be
copied or the bean might inform the Deployer where to retrieve the bundle.

5.9 Object Interaction Diagrams for Deployment
Configuration Beans

This section contains an object interaction diagram (OID) that illustrates the
interaction of DD beans and configuration beans.

Figure 5.1 illustrates a hypothetical session for generating configuration beans
for a J2EE application. The Tool is the control center. DD Beans activity is noted
to the left of the Tool, and a J2EE product provider’s configuration beans activity
is to the right. Two objects, DeploymentConfiguration and DConfigBean, are not
listed at the top of the diagram. They appear in the middle of the diagram. Their
activity is mapped after they are created.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

Figure 5.1

Deployment Confizguration Heans
loymenthian
DDBeans Tool [Deplor et
I |
new |des E"-tpln:-:.'al:-l:'f‘bjt-:t I
I 1 .
l I areate Configunation | 2ee DeployableObjedt) I
: I Doz Lol C o figleaion I :
1 [
-4
| I | :
I T Caqployablahjed 'IE*-'DEE‘H'IRDD'I‘I I I
I C:D'EwanB |
J “
I I et DeC onfigE eary D LB eanfzat) |
| 1 D enfig Bran I |
1 ™ [| |
1 | . I '
I gefipathe] |
Strirgg Xpethl] |
1 for eachfpath(] | I I
|
I« _ ! Far aach #:.Ln'- tised, |
I DD, gt ChikIESan X patht extract thi L string fram |
CICiE I the duplopribut desergar]
I] .l nm‘_;.-.-.-n-‘:'ur-ln DOEwan I
|
L for £azh :l:nee.m” I i Nl
I M
Fafarm tha gananar
I OB axns o the
I:l\.--:-nﬁftm,;tll:{-:-nﬁ,;&mrq:ls'-: i mﬁ#swk thrt spocifad
1 I Dianfigbeanl] | the Kpatks The bacghwall
Nl aE R Isale foh
1 I I ?thn‘_ffl..rud;ﬁl:-.:._-'-hu'ﬁl ipat
Inoy kil
v v v v v

49

50

Fregelovyisentt Clootfl puevations Becwis cosifinue

DD Bemms Fool Deploymenidanager
I | I 1 I
I | I 1 I
I fior emch LC‘-:-nflgE‘-:] I I I
I | o [I
I I | Thack EM'_I:"'._-\.M;.‘I?..‘IHTN_.‘I:I-'
comtbere0y 1 S

I I . wnite] mbren Beaths are :\.-:.-.

strirg Xpsthl] : H
| [| ! !
[(N — ! I
| | I ! I
| 1 I I
I IE"@DI-{rrl'l?nIC-ﬂri'z:l.llsli-i'lﬁl'et'?llliulﬁlu?aul] I

I Wik o) et I
I I covEigunT anformanios
e e

I 1 | | I
| | I | |
I | I [|
| | I 1 I
| | I [I
| | ! I I
I | I I |
I ! I I I
I | I | I
I | ! | I
I I | I I
' v + v +

Figure 5.2 Deployment Configuration

51

5.9.1 Restore Configuration Beans

Restore Deployment Configuration Beans

ReeApplicationObject Tool DeploymentConfiguration

Previously the tool si\-’od the for eaclJDC@nﬂgBecmRoor |

configuration geszion| It saved the

data by D ConfigBeanRoot object.
v

| savel ConfigBean]Output Stream, DO (lnf igBeanFoot)
v v

Wirte data

Thetool restores the saved
confignration session,

-

Deplc:ry ableObject | new J2esDeployvable ObjeJ;t |

L7| | |

| for each module n the archive | |
Create a new Deployable—

] Object . Create Deployabla— | |
Object for abplicationzml if

| approprlat; ! -'L |

Ll
| | createConfisuration(J2es Depl oyabledbject)

| - |
| DeployableObject]] |
| .

| il |

| getDeployableCbjects()

L | for each DeplayablfObiect] |
| getDDEeanFoct() |

DDEzanEoot
| | ; |
| | COpen file with DC@TﬁgB ean Root data _J

™

| | restorchConf']chan(InputStream, DDBeanEﬁoot‘J

| Read date and
| | | generate
| DT onfig Beansy
| l" LiConfizBeanE oot |

v v v v

52

6

Packaging

A server plugin is packaged into one or more JAR files with a .jar extension.

The JAR file or files contain an implementation of fheax.enter-
prise.deploy.spi package and utility classes. The APIs must be implemented i
the vendor’s namespace.

The entry point class to the server plugin is an implementation oéghey-
mentFactory interface. There can be one or m¥gloymentFactory
implementation classes in the plugin. Each implementation must be identified by
fully qualified class name in the JAR file’s manifest file by the attribate-
DeploymentFactory-Implementation-Class.

The manner in which a vendor’s plugin JAR file(s) are made available to th
tool is not specified. Some J2EE Product vendors may direct the user to downid
the plugin from a web site, another may require the user to copy it from their loc
server installation, and another may provide an initial JAR file whasey-
mentFactory implementation contains an automated mechanism that download
the JAR file(s) on a tool’s initial request fob&1oymentFactory.

The plugin should not assume that any packages other than the J2SE vers
required by the plugin’s J2EE platform or higher andjthex.enter-

prise.deploy package will be available. The plugin should not provide the J2EH§

APIs in the JAR files provided to the tool. Plugins should not attempt to load
application classes in the tool. The plugin may send the application classes to
server and load them there for reflection, but the plugin should not try to use
reflection on application classes in the plugin because doing so is not portabl

The manner in which a vendor’s plugin JAR file(s) are made available to th
tool is not specified. Some J2EE Product vendors may direct the user to downid

53

—

on

he

14

ad

the plugin from a web site, others may require the user to copy it from their log

al

54

server installation, and another may provide an initial JAR file whgsey-

mentFactory implementation contains an automated mechanism that download

the JAR file(s) on a tool’s initial request fob&1oymentFactory.

6.1 Accessing a server plugin

2]

The manner in which a tool makes a server plugin accessible in its classpatly is

not specified. One tool vendor may designate a directory in which all plugin jal
files are saved. It could then process all the jar files in the directory. Another may

retain a repository of plugin names and directory locations which it processes.
third vendor may require the user to identify the location of the plugin whenever
runs.

The tool vendor is required to provide the J2SE version required by the plug|n

or higher and thgavax.enterprise.deploy package. SegtDConfigBeanVer-
sion in Section 4.2 for information on how to get the plugin version.

The entry point to a server plugin is the implementation obéhoyment-

Factory interface. A server vendor must provide at least one implementation of

theDeploymentFactory interface. The fully qualified name of easiployment-
Factory implementation in a JAR file must be identified in 1REE-Deployment-
Factory-Implementation-Class attribute of the JAR file’'s manifest file.

A

—

55

v

Deployment Target

A deployment target (target for short) represents an association between a server or
group of servers and a location to deposit a J2EE module that has been properly
prepared to run on the server or servers. A target can represent a specific application
server installation on a specific host or it can represent a cluster of servers over many
hosts. The storage area may be a directory or database or some other storage
location. ATarget represents an atomic element. For example-get can

represent a cluster of servers as a single deployable target. The tool and Deployer
need not know the server configuration thadeget represents. Itis left to the

product provider to define the type of association that is appropriate for its product.

At least onerarget object must be defined per J2EE product. The product
target information must be accessible tot&el oymentManager. An application
will be distributed to the target or targets specified at deployment time.

7.1 Target Methods

» getNamereturns a string containing the name of the target.

 getDescriptionreturns a string containing descriptive information about the
target.

7.2 Target Examples
Figure 6.1 shows three hypothetical targets. The figures show the logical

relationships of the elements. They are not meant to imply a physical partitioning
of elements into separate machines, processes, or address spaces.

56

Example 1 illustrates a J2EE product that defines thwggt objects. Each

target represents the association of a server with a separate directory archive
repository.

Example 2 illustrates a J2EE product that definesrergt object. Three
servers use the same directory for the target’s archive repository. This exampl

demonstrates a target functioning as a stagging area from which multiple servgrs
pull applications to install and run.

174

Example 3 there are J2EE product vendors that define a unique server to pe
defined by a server paired with a database. In this example a single server is pajred
with two separate databases, thus there are two separate servers by this vendor’s
definition . A unique target has been defined for each server in this example.

57

AcmeCo_target_1 ‘ AcmeCo_target_2 | AcmeCo_target_3

' ' !

directory

directory directory

server A zerver B server_C

example 1

AcmeCo_targer_1

v

directory

example 2

AcrneCo_target_1 AcrmeCo_targst_2

\

Dratabase_alpha Databaze beta

example 3

Figure 7.1 Example Targets

Undeploy Application

Deployer Tool DeploymentManager ‘ J2EE Platform

2 _ | |
St the ninning modules to be
undrpioyed. See figure 4.3 | | |

um'inoy > -|r~ |
| | undeploy{modulsTyps, Target[]) | |
| | Progressibject | Vendor—specific mechrx.r'sm
|4 o provide operation |
| | Progress

.
| *|

remove'moduie

| | update kaio}ment&‘rarm |

| Progress ObjectthLcner.handleProgress Ewvent(Prograss Ev{:nt) |

o

repart campleted wndeploy
" |
|‘ I

| | ralease()

-
il |
| release platform resource

Figure 7.2 Target Examples

59

7.3 Target and the J2EE Management Specification
(JSR 77)

There is no managed object in the management model that translates directly
to a Target object. There is a J2EEServer object. This represents a single J2EE
server. A Target can represent a single server, but it can also represent a collection
of servers. ltis left to the J2EE Product Provider to provide a translation of Target
object to J2EEServer objects for their product. See section 3.3, "J2EEServer
extends J2EEManagedObject" in the Java 2 Enterprise Edition Management
Specification.

60

61

8

TargetModulelD

TheTargetModuleID object contains a target-module ID, which is a unique
identifier associated with a distributed module. The identifying information consists
of the target name on which the module is distributed and a unique identifier
assigned to the module. The module identifier must be unique within the J2EE
product. The identifier remains the same for the life of the module on the product.
The target-module ID of each deployed module must be accessibloéptbe-
mentManager.

TheTargetModuleID also maintains a reference to its parent and its children.
If the parent reference is null, thergetModuleID is the root of the deployed
application. ATargetModuleID for a stand-alone module will have no parent and
no children references.

TheTargetModuleID is the mechanism by which the Deployer identifies to the
J2EE product through tlreploymentManager the deployed application or
module on which to perform a deployment operation, such as starting a module or
undeploying a module.

8.1 TargetModulelD Methods

- getModulelD returns a string containing the module name for the deployed
module.

- getTargetreturns thaarget object for the module.

- toString returns a string containing the unique identifier, consisting of the
target name and module name, that represents the deployed module.

62

- getParentTargetModulelDreturns aargetModuleID Object that references
the parent of this object. Aull value means that this is the root object of the
deployed application.

- getChildTargetModulelD returns a list of all the children of this object.

- getWebURL returns the URL of a web module if this ID represents a web
module. Anull value means this ID does not represent a web module.

8.2 TargetModulelD and the J2EE Management
Specification (JSR 77)

In the management model the class J2EEObjectName is used to identify a
managed object. It is a value object that uniquely identifies a managed object
within a management domain. The object name consists of two parts, a domain
name and a set of key properties. The key property list enables the assignment of
unigue names to managed objects of a given domain. It is recommended that the
modulelD be used as one of the key properties of the managed object name. See
section 7.3, "J2EEObjectName Class" in the Java 2 Enterprise Edition
Management Specification.

63

9

ProgressObject

A ProgressObject object tracks and reports the progress of potentially long-lived
deployment operations, such as those represented by the distribute, start, stop, and
undeploy methods. It also provides an means to retrieve, configure and run an
application client. The ProgressObject class has been defined such that a tool can
either poll it for status or provide a callback.

The J2EEE Product Provider may provide a cancel method or stop method for
the running operation. These agptionaloperations in the API. A tool can check
for support of the cancel operation by calling the isCancelSupported method, and
support of the stop operation by calling isStopSupported. An unsupported cancel
or stop operation must throw a@fisupportedOperationException.

A cancel request on an in-process operation stops all further processing of the
operation and returns the environment to its original state before the operation was
executed. An operation that has run to completion cannot be cancelled.

A stop request on an in-process operation allows the operation on the current
TargetModuleID to run to completion but does not process any of the remaining
unprocessetlargetModuleID objects. The process&drgetModulelID objects
must be returned by the meth@etResultTargetModulelIDs.

A ClientConfiguration object is returned by the ProgressObject for each
application client distributed to the J2EE product. The ClientConfiguration object
is a JavaBean that installs, configures and executes an application client. A
ClientExecuteException is thrown if the configuration is incomplete.

9.1 ProgressObject Methods

» getDeploymentStatugeturns th@eploymentStatus object that contains the
current status details.

» getResultTargetModulelDsreturns a list ofrargetModuleIDs that completed
the associatebkeploymentManager operation successfully.

« getClientConfiguration returns a ClientConfiguration object that installs,
configures, and executes an application client.

« isCancelSupportedindicates whether this product provider has implemented
a cancel operation for the associategl oymentManager operation.

 cancelstops all further processing of the operation and returns the environ-
ment to its original state before the operation was executed. Thigjgian-
al method for vendor implementation.

* isStopSupportedindicates whether this product provider has implemented a
stop operation for the associatgloymentManager operation.

 stopallows the operation on the current TargetModulelD to run to completion
but does not process any of the remaining unprocessed TargetModulelD ob-
jects. This is amptionalmethod for vendor implementation.

9.2 DeploymentStatus Interface

TheDbeploymentStatus Object contains information about the progress status
of deployment actions.

9.21 Deployment Command Enumeration Objects

 CommandType.DISTRIBUTE indicates that the object represents status in-
formation for a distribute command.

 CommandType.START indicates that the object represents status informa-
tion for a start command.

65

* CommandType.STOPindicates that the object represents status information
for a stop command.

 CommandType.UNDEPLOQY indicates that the object represents status in-
formation for an undeploy command.

« CommandType.REDEPLOY indicates that the object represents status in-
formation for a redeploy operation.

9.2.2 Deployment Status Enumeration Objects

» StateType.COMPLETED indicates that the deployment operation has com-
pleted normally.

« StateType.FAILED indicates the deployment operation has failed.

» StateType.RUNNING indicates that the deployment operation is running
normally.

« StateType.RELEASEDi ndicates that thBeploymentManager started run-
ning in adisconnecteanode while this ProgressObject was still active.

9.2.3 Progress Action Enumeration Objects

» ActionType.CANCEL indicates that a cancel operation is being performed on
the original deployment operation.

» ActionType.STOP indicates that a stop operation is being performed on the
original deployment operation.

» ActionType.EXECUTE indicates that the initial deployment operation is be-
ing performed.

9.2.4 Deployment Status Message

Additional information about the object’s deployment status can be provided
in a text string.

66

9.25 DeploymentStatus Methods

» getStatereturns the current status value.

» getCommandreturns the DeploymentManager’s command value.
 getAction returns the current action value.

» getMessageeturns information text provided about the status.
 isCompletedreturnstrue if the command has completed successfully.
* isFailedreturnstrue if the command has failed.

* isRunning returnstrue if the command is currently running.

9.3 ClientConfiguration Methods

» executeinstalls, configures and executes the application client .

Note that the Serializable nature of the ClientConfiguration object is limite
across VM activations of the application client container.

9.4 Object Interaction Diagrams for a ProgressObject

This section contains object interaction diagrams (OID) that illustrate the
interaction of @rogressObject with the tool andeploymentManager.

The diagrams illustrate two hypothetical sessions. Figure 8.1 shows the use of
polling to get operation status. Figure 8.2 shows the use of a callback to get
operation status.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

ProgressObject Events by Polling
JZEE
Tool Deploy mentManager ‘ Platform
| | |

.
r|

| start(TargerModuleID) ‘ ProgressObject ‘ |

| | >| Vendor—splza:ﬁc

| | creqate ProgressObject() | mechanism to
establish Z;lemtion

| | ProgressObject | status |

| | | |

Progress notifidation from platfor
| | ¢ prony
| | wprdiate peploymenISmrus |

|
I'l |

| getDeploymentStatus() |

| | DeploymentStatng | |

on going notifications |
| | | |

| | update DdploymentStatus |

| | , |
getDeploymentStatis() | '| |

| D eployrments tatug

Figure 9.1 ProgressObject Events by Polling

68

Tool
I

ProgressObject Events by Callback

J2EE

DeploymentManager ‘ Platform

. |
> | ProgressObject ‘
start(Targeth oduleID 1) |) Vendor—sch;Cﬁc
| create ProgressObject() mechanismy to
|| establish operation

| ProgressObject | status |
create ﬁrogressb’srener | | |
| | |
addProgressListener(ProgressListener) '| |
| Aq—l

L ProgressListener.handl cProgrcssETvcnt(ProgrcssE',vcnt)

| Progress notification from plalforrr

update L'Lepfaym entStatus |
l

|
|

|

|
| |
|
ongoing notificats ond
| |
update DleploymentStatus |
| |
| |
| |

| ProgrcssListencr.handlcProgrcssE\{cnt(ProgrcssEvcnt)

|
¥

|
|
v

Figure 9.2 ProgressObject Events by Callback

69

9.5 ProgressObject and the J2EE Management
Specification (JSR 77)

The management model provides a facility for event notification by managed
objects. This is an optional feature. If a managed object supports event notification
and the ProgressObject wishes to receive the events, it must register an event
listener object that implements the J2EEManagementEventListener interface. See
section 7.7.3, "Event Listener Requirements"”, and section 5.1, "StateManageable"
in the Java 2 Enterprise Edition Management Specification.

70

71

10

DeploymentManager
Discovery

TheDeploymentManager is a service that helps the Deployer configure and deploy
an application to a J2EE product. Every J2EE product provinlgs @mentMan-

ager. A deployment tool must acquire a reference to the J2EE prooictis) -
mentManager through @&eploymentFactory object.

10.1 DeploymentFactory

A DeploymentFactory Object is a deployment driver for a J2EE product. It
returns aeploymentManager Object.

Each J2EE product provider must provide at least one implementation of this
class with its product. The class implementing this interface must have a
constructor that takes no arguments, and must be stateless (that is two instances of
the class must always behave the same). It must be able to retumneatedr
disconnected®eploymentManager object.

10.1.1 DeploymentFactory Methods |

* handlesURIis the method thatinspects the Uniform Resource Indicator (URI)
provided and returnsue if it can provide a deployment factory for the URI,
andfalseif it can not.

» getDeploymentManagerreturns aconnectedeploymentManager object. A
DeploymentManager that runs connected to the J2EE product can provide ac-
cess to J2EE resources.

72

» getDisconnectedDeploymentManagerreturns alisconnectedeployment-
Manager Object. ADeploymentManager that runs disconnected only provides
module deployment configuration support.

10.1.2 DeploymentFactory Discovery

The fully qualified class name of evargploymentFactory implementation
provided in a plugin by the J2EE product provider must be listed iretie
DeploymentFactory-Implementation-Class attribute of the containing JAR’s
manifest file.

A tool vendor must introspect each JAR manifest file extract this informatid
in order to a create instance of each implementation class.

An example manifest file identifying twmeploymentFactory implementation |
classes:

Manifest-Version: 1.0

Specification-Title: J2EE Specification

Specification-Vendor: Sun Microsystems, Inc.

Created-By: 1.3.0 (Sun Microsystems Inc.)
Implementation-Vendor: Sun Microsystems, Inc.
Specification-Version: 1.3

Implementation-Version: 1.3beta
J2EE-DeploymentFactory-Implementation-Class:
com.sun.enterprise.deployapi.spi.RIDeploymentFactoryAlpha
com.sun.enterprise.deployapi.spi.RIDeploymentFactoryBeta

10.2 DeploymentFactoryManager

TheDeploymentFactoryManager represents a central registrypaployment-
Factory connections. The deployment API provides an implementation of the
DeploymentFactoryManager. A tool creates an instance of theploymentFactory
Manager. The tool creates an instance dfeploymentFactory Object and registers
it with theDeploymentFactoryManager.

N

73

When a tool requestsbaploymentManager and provides a URI, theploy-
mentFactoryManager is responsible for finding@eploymentFactory that
recognizes the URI and for using it to return the correspomdisigymentMan-
ager. If theDeploymentFactory understands the URI, it will returrbaployment-
Manager Object; otherwise it returns null.

TheDeploymentFactory class provides a methaghndlesURI, which the

DeploymentFactoryManager can use to determine which of its registered drivers it
should use for a given URI.

10.2.1 DeploymentFactoryManager Methods

registerDeploymentFactoryadds @eploymentFactory object to the set of
available factories.

getDeploymentManageracquires @&onnectedeploymentManager instance.

getDisconnectedDeploymentManagesicquires alisconnectedeployment-
Manager instance.

getDeploymentFactoriegeturns a list of currently registered deployment
factories.

10.2.2 URI

A Uniform Resource Identifier (URI) can be used to identify a
DeploymentManager.

A URL could be used as in the following example to identify a connected
DeploymentManager.

For example, if the Acme company provided a server product named
AcmeServerPlus, its URL could be:

example: deployer:AcmeServerPlus:myserver:9999

The following code example shows how a tool obtains a connegigeély -
mentManager Object.

74

DeploymentManager manager;
String url = "deployer:AcmeServerPlus:myserver:9999";
String user = "admin";
String password = "pw";
manager = DeploymentFactoryManager.getDeploymentManager(url, user, password);
if(manager != null) {
... Il Deploy an application
}

10.3 Object Interaction Diagrams for
DeploymentManager Discovery

This section contains object interaction diagrams (OID) that illustrate how a
DeploymentManager can be retrieved.

The diagrams shows two methods of acquiridgpdoymentManager object.
Figure 9.1 shows acquiring a disconneesi oymentManager and figure 9.2
shows acquiring a connecteéb1oymentManager. Where possible the
corresponding method calls and data types are used. A general description of the
interaction is provided for those actions that are implementation-specific.

The order of the interactions listed should be considered illustrative of an
implementation rather than prescriptive.

Deployer
|

Profride URI

Disconnected Deploy mentManager

Tool DeploymentFactorylanager

| Py
L

DeploymentFactory

| getDisconnectedD gploymentManagen URT) |

| |
for each Depqoymem—
| Factory o list

|
>

| | handlesUTRI(TTRI) |

| true or false

r

| if true

1

| DeploymentManager

»l

I ™
GctDisconrrcctedDcploymcntManagct(‘URI)

new DeploymentManager

DcpfoymcntManagcr

Figure 10.1 Acquiring a Disconnected DeploymentManager

75

76

Deployer Taal

Provide URL, user
narme, passwond

Connected DeploymentManager

DeploymentFactoryManager

-

DreploymentFactory

| gctDcploymcntManigcr(URL user narne, password)

for each Depq@)mem—
Factory i list

N
>

| HandlesURI{URI) |

true or false

e

if true

| DeploymentManager

getD cploychntM anager(URI, uzer narTc, paggword)

» |
»
|
—
new DeploymentManager

DcproymcntManagcr

Figure 10.2 Acquiring a Connected DeploymentManager

77

78

79

11

Exceptions

This chapter describes the exceptions used in the Deployment API.

11.1 jaxax.enterprise.deploy.spi.exceptions package |

» BeanNotFoundExceptionis thrown when the bean is not a child of the parent
bean .

* DeploymentManagerCreationExceptionis thrown when theeployment-
Factory iS unable to createb@ploymentManager object.

» DConfigBeanVersionUnsupportedExceptioris thrown when the DDBeans
for a particular J2EE platform verions can not be provided by the tool.

« InvalidModuleException is thrown when an invalid module type is detected
by theDeploymentManager.

« TargetExceptionis thrown when an invalitarget object is detected by the
DeploymentManager.

* java.lang.UnsupportedOperationExceptionis thrown when an unsupported
operation is called.

» ConfigurationException is thrown when @onfigBean cannot be created.

« ClientExecuteExceptionis thrown when the application client run environ-
ment could not be setup properly.

* java.lang.lllegalStateExceptionis thrown when a method has been invoked
at an illegal or inappropriate time.

80

11.2 javax.enterprise.deploy.model.exceptions package

» DDBeanCreateExceptionis thrown when a DDBeanRoot object can not be
created for a specified XML instance document.

81

A

Appendix

A.l DConfigBean Design Scenarios

This section shows several ways of designing a deployment configuration
bean.

This example shows three wayBsGanfigBean could be designed to extract
theres-ref-name data from the deployment descriptor fragment . Note these
examples assume that an XML parser call retrieves the Xpath data from the
deployment descriptor file.

<ejb-jar>
<display-name>Ejbl1</display-name>
<enterprise-beans>
<session>
<display-name>com_sun_cts_harness_vehicle_ejb_EJBVehicle</display-name>
<ejb-name>com_sun_cts_harness_vehicle_ejb_EJBVehicle</ejb-name>
<resource-ref>
<res-ref-name>eis/whitebox-tx</res-ref-name>
</resource-ref>
<resource-ref>
<res-ref-name>eis/whitebox-notx</res-ref-name>
</resource-ref>
<resource-ref>
<res-ref-name>eis/whitebox-xa</res-ref-name>
</resource-ref>
<resource-ref>
<res-ref-name>eis/whitebox-tx-param</res-ref-name>
</resource-ref>
<resource-ref>

82

<res-ref-name>eis/whitebox-notx-param</res-ref-name>

</resource-ref>

<resource-ref>
<res-ref-name>eis/whitebox-xa-param</res-ref-name>

</resource-ref>

</session>
</enterprise-beans>
</ejb-jar>

Al.1l Scenario one

In the first scenario, BConfigBean returns a chilConfigBean for eachres-
ref-name element provided by the tool.

Session_DConfigBean, the config bean for a deployment descripiession
definition, is implemented by the J2EE Product Provider.

1. Session_DConfigBean requests the tool to return all of tltes-ref-name data
by providing the relative Xpathrésource-ref/res-ref-name".

2. The tool calls the XML parser to retrieve the XML elements and creates a
DDBean for each XML element that is returned.

3. EachppBean is passed to th&ession_DConfigBean.

4. TheSession_DConfigBean returns a correspondimgsRefName_DConfigBean
to the tool.

5. TheresRefName_DConfigBean returns a null Xpath, because it does not have
any child data to be collected.

/* Code provided by the J2EE Product Provider */
public Class Session_DConfigBean implemé@disnfigBean {
public String [] getXpaths() {
String [] str = {"resource-ref/res-ref-name"};
return str;

public DConfigBean getDConfigBean(DDBean bean) {
return new ResRefName_DConfigBean(bean);

}

83

public Class ResRefName_DConfigBean implements DConfigBean {
public String [] getXpaths() {
return null;

/* Code provided by the Tool Provider */

public class Tool {
DConfigBean parentCfgBean; // a Session_DConfigBean
DConfigBean childCfgBean; // a ResRefName_DConfigBean

I/l parentCfgBean was passed to the tool earlier

String [] xpaths = parentCfgBean.getXpaths();

for (inti = 0; i < xpaths.length; i++) {
/* Have the XML parser return the matching Xpath objects */
NodelList nList = XpathAPI.selectNodeList(xmIDoc, xpathsli]);

/* Get a new child config bean for each DDBean presented */

for (intj = 0; j < nList.getLength(); j++) {
bean = new DDBean(nList[j]);
DConfigBean childCfgBean =
parentCfgBean.getDConfigBean(bean);

}

}
}

A.l.2 Scenario two

In the second scenario, theonfigBean builds a internal table ofes-ref-
name data that will be used to display to the user. No @titdfigBeans are
returned.

84

ThesSession_DConfigBean in this example returns a null value for method
getXpaths, therefore methogetChildBean will never be called by the tool.

1. session_DConfigBean retrieves the data it requires by callingpitBean ob-
ject’'sgetChildBean method and passing the Xpath to it.

2. ThebDBean returns all the matching Xpath elements found. With this data, the
DConfigBean can build its table.

/* Code provided by the J2EE Product Provider */

public Class Session_DConfigBean implements DConfigBean {
DDBean ddbean;
DDBean [] childList;

public Session_DConfigBean(DDBean bean) {
ddbean = bean;
childList = ddbean.getChildBean("resource-ref/res-ref-name");

}

public String [] getXpaths() {
return null;

/** code to create the table **/

/* Code provided by the J2EE Product Provider */
public Class Simple_DDBean implements DDBean {

public DDBean [] getChildBean(String xpath) {
[* Have the XML parser return the matching Xpath objects */
NodeList nList = XpathAPl.selectNodeList(xmIDoc, xpath);

[* Create a new DDBean for each returned XML element */
int cnt = nList.getLength();
DDBean [] childList = new DDBean[cnt];

85

for (inti=0;i<cnt; i++)
childList[i] = new DDBean(nList[i]);

return childList;

A.1.3 Scenario Three

In the third scenario, theConfigBean builds a internal table ofes-ref-name
data as in the second scenario, but instead of retrieving adisteahs, it
retrieves the XML data as a list of strings.

In this example theession_DConfigBean Object’s correspondinppBean
getXpath method, rather than thetcChildBean method, is called.

/* Code provided by the J2EE Product Provider */
public Class Session_DConfigBean {

DDBean ddbean;

String [] childStrList;

public Session_DConfigBean(DDBean bean) {

ddbean = bean;
childStrList = ddbean.getText("resource-ref/res-ref-name");

}

public String [] getXpaths() {
return null;

/** code to create the table **/

}

[* Code provided by the J2EE Product Provider */
public Class Simple_DDBean {

public String [] getText(String xpath)

86

[* Have the XML parser return the matching Xpath objects */
NodelList nList = XpathAPI.selectNodeList(xmIDoc, xpath);

[* Get the text from the parser node */
int cnt = nList.getLength();
String [] childList = new String[cnt];
for (inti=0;i<cnt; i++)
childList[i] = getTextFromNode(nList[i]);

return childList;

}

private String getTextFromNode(Node node) {
[* extract the string data from the node */
}
}

A.2 EJB Container-managed Persistence

The J2EE platform requires support of the set of DTDs for the current J2EE
version and for previous J2EE versions. This means that container-managed
persistence, CMP 1.1 and CMP 2.0 as defined in the Enterprise JavaBeans ™
(EJB) Specification 1.1 and 2.0, must be supported. This example uses the
deployment descriptor version number provided byb#8 oyableObject and an
XPath query to demonstrate one possible way to determine the CMP version.

The EJB Specification 2.0 requires backward compatibility for EJB 1.1
entity beans with container-managed persistence. The EJB 2.0 deployment
descriptor DTD provides a new elemetity-version, to identify which CMP
version to use. This element does not exist in the EJB 1.1 DTD. In an EJB 2.0
component, if the elementp-version is provided in the deployment descriptor
file, its value, 1.x or 2.x, identifies the CMP version to be used. Knupeversion
element is used in the EJB 2.0 component deployment descriptor file, the default
version, 2.x is used.

In this example the clagsitity_DConfigBean provides support for collecting
the runtime configuration information for a EJB entity bean. The class constructor

87

determines the version of the EJB DTD by calljg@oduleDTDVersion on the
DeployableObject Of theDDbean. The constructor assumes the DTD and CMP
version will be the same and sets thgver accordingly. The constructor sets the
list of xpaths based upon the version number for efficiency.

This example could have used the same xpath list for both version 2.0 and 1.1
but since the EJB 1.1 has no such DTD elemedtiean would never be returned.
Since an EJB 1.1 DTD never provideanga-version tag methodgetDConfig-

Bean does not need to check the valueafver. It only needs to set the value of
thecmp-version presented.

public class Entity DConfigBean implements DConfigBean {
String xpathList [];
DDBean ddbean;
String dtdVer;
String cmpVer;

/**

* Constructor

*/

public Entity DConfigBean (DDBean bean) {
ddbean = bean;

/* Get the bean’s DeployableObject and its DTD version number.*/
DeployableObject dObj = ddbean.getRoot().getDeployableObject()
dtdVer = dObj.getModuleDTDVersion();

/* Set the xpath list for this entity bean */
if (dtdVer.startswWith("1")) {
cmpVer = “1.x";
xpathList = {"cmp-field"};
}
else {
cmpVer = “2.X";
xpathList = {"cmp-version”, "cmp-field"};

/**

* Process XML data provided by the DDBean

88

*/

public DConfigBean getDConfigBean(DDBean bean) {
DConfigBean cBean = null;
String tmpStr = bean.getXpath();

if (tmpStr.equals("cmp-version™)) {
[* get the version value */

cmpVer = bean.getText();

[* ... do other processing */

	J2EE™ Deployment API
	1.1 Overview
	1.2 Scope
	1.2.1 Relationship to the J2EE Management Specification (JSR- 77)
	1.2.2 Replacing a J2EE Application

	1.3 Organization
	1.4 Object Interaction Diagram Notation
	1.5 Acknowledgments

	Roles
	2.1 J2EE Product Provider
	2.2 Tool Provider
	2.3 Deployer

	Interface Overview
	3.1 Tool Provider Interfaces
	3.1.1 javax.enterprise.deploy.model.exceptions package

	3.2 Tool Provider Classes
	3.3 Tool Provider Interfaces Diagrams
	3.4 J2EE Product Provider Interfaces
	3.4.1 javax.enterprise.deploy.spi.factories package
	3.4.2 javax.enterprise.deploy.spi.status package
	3.4.3 javax.enterprise.deploy.spi.exceptions package

	3.5 J2EE Product Provider Interfaces Diagram
	3.6 Shared Classes
	3.6.1 javax.enterprise.deploy.shared package
	3.6.2 javax.enterprise.deploy.shared.factories package

	3.7 Environment Requirements
	3.7.1 Tool’s Security Permission Set

	DeploymentManager
	4.1 DeploymentManager Requirements
	4.2 DeploymentManager Methods
	4.3 Starting and Stopping Applications
	4.4 Internationalization
	4.5 Object Interaction Diagrams for DeploymentManager
	4.6 DeploymentManager and the J2EE Management Specification (JSR 77)
	4.6.1 Listing Deployed Modules
	4.6.2 Module Start and Stop

	Deployment Configuration Components
	5.1 Runtime Configuration Components
	5.1.1 Deployment Configuration Beans
	5.1.2 Deployment Descriptor Beans

	5.2 Multiple Deployment Descriptor Files
	5.3 UI Contract between Tool and Server Plugin
	5.4 ModuleType Enumeration Objects
	5.5 Deployment Descriptor Document Version
	5.5.1 DTD Document
	5.5.2 XML Schema Document

	5.6 DConfigBean Version
	5.6.1 DConfigBeanVersionType Enumeration Objects

	5.7 XPath Syntax
	5.7.1 AbsoluteLocationPath Syntax
	5.7.2 RelativeLocationPath Syntax
	5.7.3 Multiple Namespaces

	5.8 Client Applications
	5.9 Object Interaction Diagrams for Deployment Configuration Beans
	5.9.1 Restore Configuration Beans

	Packaging
	6.1 Accessing a server plugin

	Deployment Target
	7.1 Target Methods
	7.2 Target Examples
	7.3 Target and the J2EE Management Specification (JSR 77)

	TargetModuleID
	8.1 TargetModuleID Methods
	8.2 TargetModuleID and the J2EE Management Specification (JSR 77)

	ProgressObject
	9.1 ProgressObject Methods
	9.2 DeploymentStatus Interface
	9.2.1 Deployment Command Enumeration Objects
	9.2.2 Deployment Status Enumeration Objects
	9.2.3 Progress Action Enumeration Objects
	9.2.4 Deployment Status Message
	9.2.5 DeploymentStatus Methods

	9.3 ClientConfiguration Methods
	9.4 Object Interaction Diagrams for a ProgressObject
	9.5 ProgressObject and the J2EE Management Specification (JSR 77)

	DeploymentManager Discovery
	10.1 DeploymentFactory
	10.1.1 DeploymentFactory Methods
	10.1.2 DeploymentFactory Discovery

	10.2 DeploymentFactoryManager
	10.2.1 DeploymentFactoryManager Methods
	10.2.2 URI

	10.3 Object Interaction Diagrams for DeploymentManager Discovery

	Exceptions
	11.1 jaxax.enterprise.deploy.spi.exceptions package
	11.2 javax.enterprise.deploy.model.exceptions package

	Appendix
	A.1 DConfigBean Design Scenarios
	A.2 EJB Container-managed Persistence

